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ABSTRACT. The notions of p-convexity and concavity are fundamental tools for studying Banach
lattices, as they partition the class of Banach lattices into a scale of spaces with L,-like properties.
Upper and lower p-estimates provide a refinement of this scale, modeled by the Lorentz spaces L o
and Ly 1, respectively. In this article, we provide a comprehensive treatment of Banach lattices
with upper p-estimates. In particular, we show that many well-known theorems about p-convex
Banach lattices have analogues in the upper p-estimate setting, including the ability to represent all
such spaces inside of infinity sums of model spaces, to canonically factor the convex operators and
identify their associated operator ideals, as well as to give a precise description of the free objects
and push-outs. Proving these results is far from straightforward and will require the development
of a variety of new tools that avoid convexification and concavification procedures. In fact, we will
identify many fundamental differences between the theories of p-convexity and upper p-estimates,
particularly with regards to isometric problems and renormings.
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1. INTRODUCTION

Convexity properties have long played a fundamental role in the theory of Banach lattices [17].
Recall that a Banach lattice X is p-convez if there exists a constant K > 1 such that for all n e N
and xq,...,r, € X we have

<k (Qlalr)

i=1

()

Evidently, every Banach lattice is 1-convex, and L,(u) is p-convex. By reversing the inequality
in one obtains the notion of a p-concave Banach lattice, and it is well-known that a Banach
lattice X is both p-convex and p-concave if and only if it is lattice isomorphic to L,(u) for some
measure .

The above convexity and concavity properties partition the class of Banach lattices into a scale
of spaces with properties similar to those of L,. In fact, by Maurey’s Factorization Theorem, it
follows that a Banach lattice is p-convex if and only if it is lattice isomorphic to a closed sublattice
of an {,,-sum of L,-spaces. This theorem unlocks a host of concrete tools that can be used to study
a wide class of function spaces and is in some sense analogous to the well-known representation of
Banach spaces as closed subspaces of £,-sums of copies of the real line.

It is natural to replace one of the p-sums by a g-sum in . However, it is well-known that this
only leads to one additional non-trivial property; namely, (p, o0)-convexity. Here, we recall that a
Banach lattice X is (p,o0)-convex (or has an upper p-estimate) if there exists a constant K > 1
such that for all n € N and zq,...,x, € X we have

n

1

n 3
Vel < 5 (Rlar)"
i=1 i=1
It is well-known that X is (p, c0)-convex if and only if the inequality holds for all pairwise
disjoint 1, ..., x, € X. Although (p, c0)-convexity is also a classical notion [I7], the corresponding
theory is far more difficult and underdeveloped than that of p-convexity — the primary objective of
this article is to explain and rectify this issue.

(1.2)

As we shall see, the class of (p,0)-convex Banach lattices is modeled by weak-L,. In fact, using
Pisier’s Factorization Theorem we will be able to represent every (p,o0)-convex Banach lattice
as a closed sublattice of an /,,-sum of weak-L,-spaces. Then, by studying the properties of this
representing space, we will give quick and transparent proofs of many of the fundamental structural
properties of the full class of (p, c0)-convex Banach lattices, including the fact that (p, oc0)-convexity
implies g-convexity for ¢ < p with sharp constant growing like (p — q)fé as ¢ 1 p. This is the main
content of Section [2]

In the remainder of the article, we will analyze the fine structure of (p,o0)-convex and (p,1)-
concave Banach lattices and their operators. This will present major challenges compared to the
analogous study of p-convexity and concavity. This is perhaps most strikingly illustrated by con-
trasting Proposition [2.7| and Example [3.4; Every p-convex Banach lattice with constant one em-
beds lattice isometrically into an ¢,,-sum of L,-spaces and every (p, o0)-convex Banach lattice with
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constant one embeds lattice isomorphically into an ¢,-sum of weak-L,-spaces, but there are (p, o0)-
convex Banach lattices with constant one that do not embed lattice isometrically into any f,,-sum
of weak-L,-spaces. This fact will make the isometric theory of (p, c0)-convex Banach lattices partic-
ularly subtle, and will have immediate implications for the study of free Banach lattices with upper
p-estimates as well as all other universal constructions.

Another difficulty in the study of upper p-estimates is that one no longer has access to convexifi-
cation and concavification arguments. This is a standard and often indispensable tool in the theory
of p-convex Banach lattices. For example, one may use it in combination with the fact that every
separable Banach lattice embeds lattice isometrically into C(A, L;) to immediately deduce that
every separable p-convex Banach lattice embeds lattice isometrically into C(A, L), i.e., C(A, L,)
is injectively universal for separable p-convex Banach lattices. Identifying an analogous injectively
universal object in the upper p-estimate case is much more difficult, not only because the above
proof technique breaks down, but also because L, (i) is non-separable, depends in a more compli-
cated way on the choice of measure p, and can be equipped with more than one norm. However, in
Section @ we will give strong evidence that C(A, L [0, c0)) might be the correct universal space.

With the above difficulties in mind, the primary objective of this article will be to develop a host
of new techniques to understand (p, co)-convex spaces and operators. In particular, we will develop
a series of factorization results in Section |4 and a complete theory of the relevant operator ideals
in Section m In many cases, the correct route to obtain a (p, o0)-convex analogue of a result on p-
convex Banach lattices is to replace L, with the far more difficult to work with L, ., (contrast Pisier
and Maurey’s factorization theorems) and then overcome the additional difficulties. Interestingly,
however, in other cases it will be more appropriate to replace certain £j-norms with (7,-norms
(compare with , or the general strategy in Section [7)) or to instead replace multiple £}

norms with £ , norms (compare the norm of FBL® with FBL(p’OO)). In all cases, the proof that

the desired (p, o0)-convex result holds will be significantly more complicated than the p-convex one.

1.1. Content of the paper. We begin the paper by reviewing in Section [2| some basic facts about
p-convexity and upper p-estimates. In particular, we recall some of the properties of L, o, as well
as its role as a model space in the factorization of (p, c0)-convex operators (Theorem and the
representation of Banach lattices with upper p-estimates (Proposition. We also provide a simple
proof of the well-known fact that every Banach lattice with upper p-estimates is g-convex for every
1 < g < p with a constant that explodes at a precise rate as ¢ approaches p, and give an example
that shows that the converse is not true.

Next, in Section [3| we delve into the connection between the class of Banach lattices with upper
p-estimates (with constant 1) and that of sublattices of ¢y,-sums of L, ,-spaces. Proposition
implies that these classes coincide isomorphically, with a universal constant 7, depending only on
p. However, in Section [3.1] we establish that they cannot coincide isometrically, as we provide an
example of a (three-dimensional) Banach lattice that satisfies an upper p-estimate with constant 1,
but does not embed isometrically into any ¢,-sum of L, ,-spaces. Moreover, we show in Section
that the ambiguity in the choice of the renorming of L, . (see (2.5)) is not the cause of this
discrepancy. Implications for free Banach lattices are also discussed.

Section {4 is devoted to extending a series of results on abstract factorizations of convex and
concave operators through Banach lattices with certain convexity and concavity properties due to
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Reisner [25], Meyer-Nieberg [20], and Raynaud and the last author [24]. We take the ideas from
[20, 24] to develop a general theory of convex and concave Banach lattices and operators, which is
developed through Sections to[4.4] This allows us to extend the results from [24] on minimal
and maximal factorizations for p-convex and g-concave operators, respectively, to the setting of
(p, 0)-convex and (g, 1)-concave operators (see Theorem [4.1)), refining [20, Theorem 2.8.7]. Finally,
in Section we apply this abstract theory to the study of factorizations of operators between
Banach lattices which are simultaneously (p,ps)-convex and (g, g2)-concave, for py € {p, 0} and
¢2 € {1,q}. The corresponding result when py = p and ¢ = ¢ was established in [24]. Therefore,
here we deal with the three remaining cases.

In Section [5] we revisit the construction of push-outs in subcategories of Banach lattices es-
tablished in [8] with the aim of improving the isomorphism constant of Theorem 4.7 from the
aforementioned reference. We show using a p-convexification and p-concavification argument that
in the p-convex case this constant can be reduced to 1, that is, [3, Theorem 4.4] holds also for
push-outs in the subcategory of p-convex Banach lattices. We also apply the abstract factorization
techniques from the previous section to improve the proof for the upper p-estimates case.

Next, in Section [0, we continue the study of universal constructions in subcategories of Banach
lattices. More specifically, we show that C(A, L,[0,1]) is universal for the class of separable p-
convex Banach lattices, and provide some partial results that point towards C'(A, Ly [0, 0)) as the
natural candidate to satisfy an analogous property in the setting of upper p-estimates.

Finally, we devote Section [7| to extending some results from Reisner [25] concerning the ideal of
operators that factor through a Banach lattice with p-convex and g-concave factors to the other
three relevant cases: We show that the ideal M, ,,.q.4,) of operators that factor through a (p, ps)-
convex and a (q,g2)-concave operator, with py, € {p,0} and ¢, € {1,q}, is perfect, and can be

identified with the ideal of operators that factor through a multiplication operator from L, ,, to
L

q,92°

2. AN OVERVIEW OF p-CONVEXITY AND UPPER p-ESTIMATES

Throughout the paper, Banach lattices will be denoted by X,Y,Z... and Banach spaces by
E F,G... The closed unit ball of a Banach space E is denoted by Bg. Given 1 < p < o0, we

1
will write p* = -Z-. Expressions of the form (3, |z;|P)? are defined via functional calculus

p—1
(cf. [17, Section 1.d]) and must be understood as the finite supremum \/}_, |z;| for p = 0. We refer

the reader to [17, 20] for standard notation and terminology concerning Banach lattices.

As explained in the introduction, this paper is devoted to the study of upper p-estimates, and
more specifically its differences and similarities with p-convexity. We begin by recalling the classical
notions of convexity and concavity in full generality (see [0, Chapter 16]):

Definition 2.1. Let X be a Banach lattice, E a Banach space and 1 < p,q < o0.
(1) An operator T : E — X is called (p,q)-convex if there exists a constant K =1 such that

<K (Z ||xi|p)
=1

1

(2.1) H (Zn] ]Txi]q) '

i=1
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for every x1,...,x, € E and n € N. The best constant K satisfying (2.1)) is called the
(p, q)-convexity constant of T and is denoted K P9 (T).
(2) An operator T : X — E is called (p,q)-concave if there exists a constant K > 1 such that

oo (Erer) < (Eer)]

for every x1,...,x, € X and n € N. The best constant K satisfying is called the
(p, q)-concavity constant of 7" and is denoted K, 4 (T).

(3) A Banach lattice X is said to be (p,q)-convex (respectively, (p,q)-concave) if the identity
operator idx : X — X is (p, q)-convex (respectively, (p,q)-concave). We write KP9(X) =
K®D(idx) and Kpp(X) = Kpglidx) for the (p,q)-convexity and (p, q)-concavity con-
stants of X, respectively.

If p = q, we will simply say that T or X is p-convex (respectively, p-concave) and write K P (T) or
KW(X) (respectively, K (T) or K)(X)) instead.

If we replace arbitrary collections of vectors by disjoint collections, we arrive at the notions of
upper and lower estimates:

Definition 2.2. Let X be a Banach lattice and 1 < p < 0.
(1) X is said to satisfy an upper p-estimate if there exists a constant K =1 such that

<K (Z ||xi||p)
=1

for every (positive) pairwise disjoint xq,...,x, € X and n € N. The best constant K
satisfying (2.3)) is called the upper p-estimates constant of X and is denoted K(P)(X).
(2) X is said to satisfy a lower p-estimate if there exists a constant K > 1 such that

1 n
(2.4) (Z ||:cz-||p> <KDz
=1 =1

for every (positive) pairwise disjoint xq,...,x, € X and n € N. The best constant K
satisfying (2.4]) is called the lower p-estimates constant of X and is denoted K(,)(X).

n

S

i=1

(2.3)

The first thing that should be mentioned is that convexity and concavity are dual notions: An
operator T'is (p, q)-convex (respectively, (p, q)-concave) if and only if T™* is (p*, ¢*)-concave (respec-
tively, (p*, ¢*)-convex), with the same constant, and a similar relation holds for upper and lower
p-estimates (see, for instance, [I7, Sections 1.d and 1.f] or [6, Chapter 16]). Next, note that when
q < p, the only (p, ¢)-convex operator is the null operator, and the same happens for (p, q)-concavity
when ¢ > p. Additionally, an operator T is (p, g)-convex for some g > p (respectively, (p, ¢)-concave
for some ¢ < p) if and only if it is (p,o0)-convex (respectively, (p,1)-concave), with equivalent
constants; and a Banach lattice is (p, o0)-convex (respectively, (p, 1)-concave) if and only if it sat-
isfies an upper p-estimate (respectively, lower p-estimate), with the same constant. Finally, it is
straightforward to check that for every 1 < ¢ < o0, every operator T': E — X is (1, ¢)-convex and
every operator T': X — E is (o0, ¢)-concave, both with constant 1. Therefore, the only meaningful
cases, up to constants, are p-convexity and p-concavity for 1 < p < o0, and (p, o0)-convexity /upper
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p-estimates and (p, 1)-concavity /lower p-estimates for 1 < p < oo. Throughout the paper, either of
the synonymous terms (p, 0)-convexity and upper p-estimates will be employed when deemed more
appropriate.

As expected, the notions of p-convexity and (p, 00)-convexity are strongly related, and therefore so
are p-concavity and (p, 1)-concavity. First, it is clear that every p-convex operator is (p, 00)-convex
with the same constant. Moreover, it can be shown that every p-convex operator is g-convex for every
q < p, and the g-convexity constant is non-decreasing [I7, Proposition 1.d.5]. On the other hand,
every (p,o0)-convex operator is g-convex for every ¢ < p, with constant K@ (T) < C, ,KP®)/(T),
where C,, is a constant that explodes like (p — q)_% when ¢ — p~. Below, we elaborate on the

proof of this fact and provide a new argument (see Corollary [2.8)). Moreover, we show that the
converse is not true via Example [2.10}

The prototypical examples of p-convex and p-concave Banach lattices are L,-spaces. Actually,
these spaces play a crucial role in many representation and factorization results for p-convex and
p-concave Banach lattices and operators, as we will recall later. Some of these results have an
analogue in the setting of (p, 00)-convexity and (p, 1)-concavity, with the Lorentz spaces L, and
L, playing the role of model spaces. Let us recall some facts about these spaces.

Let (€2,3, 1) be a measure space and f a measurable function on Q. We define its decreasing
rearrangement f* : [0, 00) — [0,0) by
FA(t) :==1inf{\ > 0 : pf|f] > A} < t}.

Given 1 < p < o0, the space L, ;(p) is the set of all measurable functions f : {2 — R such that the
norm

0 1 d
£l = | #7707

is finite. Similarly, the space L, (1) is the set of all measurable functions f such that the quasinorm

1111, := supts £*(t) = sup Au({[£| > A})
t>0 A>0

3=

is finite. Note, in particular, that every f € L, (¢) has o-finite support. It is easy to check that
the quasinorm of L, (1) is equivalent to the dual norm of L« ;(p) with equivalence constant p*,
in other words, L, o (p) is the dual of L,«1(u) (up to a lattice isomorphic renorming). Actually,
L, (@) admits the following family of lattice renormings: For each 1 <7 < p, let

1
flon = sup  p(A) (j If!’”du> |
p,00 0 A

O<p(A)<

All of these norms are equivalent to the quasinorm [I1], Exercise 1.1.12]:

1
p ™
2.5 1ty < 100, < (525) WAl forevery 1€ Lyl

Moreover, given f € L, (i), the norms |||, are increasing in r € [1,p). Observe that for each
p,0

1<r<p, LI (n) = (Lpoo(p), | - ”Lglc) is a Banach lattice that satisfies an upper p-estimate with

constant 1. Hence, L« (u) satisfies a lower p*-estimate.
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Unless stated otherwise, in this paper, we will assume that L, (1) is endowed with the norm
, and we will simply denote this norm by | - ||z, or | - ||p«. Similarly, when referring to the

predual space Ly 1(@), we will write L][Jﬂ71(u) when it is endowed with the dual norm induced by

and we will simply write Ly 1(p) in the default case r = 1. As usual, when the measure

-1,

Il s
D,00
space is the natural numbers with the counting measure, we will write £, o, and £, ;.
As mentioned earlier, the spaces L,, L, and L, ; play a special role in the theory of concavity
and convexity, as the following results due to Maurey [19] and Pisier [23] illustrate. It should be

noted that both theorems can be stated for 0 < r < p, but in this work, we will only consider the
range 1 < r < p.

Theorem 2.3 (Maurey’s Factorization Theorem). Let 1 < r < p < o0, E a Banach space, T : E —
L.(1) a linear operator and C' > 0. The following are equivalent:
(1) T is p-convex with K (T) < C.
(2) There ezists a normalized g € Li(p)+ such that {g = 0} < {T'xz = 0} for every x € E, and
T = MR, where R : E — L,(g - i) given by Rx = g 7Tz is bounded with |R|| < C and
M :L,(g-p) — L.(1) is the multiplication operator by g%.

Ly(g - 1)

Theorem 2.4 (Pisier’s Factorization Theorem). Let 1 < r < p < o0, E a Banach space and
T:E — L.(n) a linear operator. The following are equivalent:

(1) There exists C' > 0 such that T is (p, 0)-convex with K®*)(T) < C.
(2) There exists C' > 0 and a normalized g € L1(u)s such that for every x € E and measurable
subset B < ()

S

S =

[Texals, o < C'lal ( JBgdu>

(3) There exists C" > 0 and a normalized g € Ly(u)+ such that {g = 0} < {Tx = 0} for every
reFE, andT = MR, where R : E — Lg!,o(g - ) given by Rz = g Tz is bounded with
IR| < C" and M : LUY (g ) — L,(n) is the multiplication operator by g+ .

E L L,(n)

S

Lyd(g-p)

Moreover, for the best constants, we have C < C" < C" < (1-7)

e

B =

Note that in the (p, o0)-convex setting, we obtain a constant (1 — %)%7% that does not appear in
the p-convex case. For r = 1, this constant will play a significant role in subsequent sections, so we
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will denote it by
N N
w=(1=7)" =00
We include for later use the corresponding dual statements for concave operators.

Theorem 2.5. Let 1 < g < s <o, E a Banach space, T : Ly(n) — E a linear operator and C' > 0.
The following are equivalent:

(1) T is q-concave with K (T) < C.
(2) There ezists a normalized g € Li(p)+ such that T = SM, where M : Ly(j) — Ly(g - 1) s

the multiplication operator by g~ and S : Ly(g - 1) — E is bounded with | S| < C.
Ls(p)

T

Ly(g - 1)

Theorem 2.6. Let 1 < ¢ < s < o, E a Banach space and T : Ly(n) — E a linear operator. The
following are equivalent:

(1) There exists C' > 0 such that T' is (g, 1)-concave with K, 1)(T) < C.

(2) There exists C' > 0 and a normalized g € Lq(pn)y such that for every f € Ly(u) and

measurable subset B <
L) U 9dﬂ>
B

(8) There exists C" > 0 and a normalized g € Li(u), such that T = SM, where M : Li(p) —
[s*]
;1

E

Q=
0 =

IT(fxs)l < ' f

L([Is:](g - ) is the multiplication operator by g’é and S : Ly (g - u) — E is bounded with

IS < ¢
Ly(p) E
k /
L (g )

qfl](
%

1 1
Moreover, for the best constants, we have C < C" < C" < (1 — qf*)qf**j*c'

T

For concave operators defined on L, or more generally on C'(K)-spaces, the analogues of the
last two results are Pietsch’s Factorization Theorem for p-summing operators (see, for instance,
[27, Theorem 9.2]) and Pisier’s generalization for (p, 1)-summing operators [23, Theorem 2.4], since
every operator defined on a C'(K)-space is (p, ¢)-concave if and only if it is (p, ¢)-summing. Maurey’s
and Pisier’s Factorization Theorems can be used, for instance, to prove the following representation
result [8, Proposition 3.3, which generalizes the well-known representation of any Banach lattice
as a sublattice of an fy-sum of L; spaces (see [I8, Lemma 3.4]). Throughout the paper, by the
Uy-sum of spaces (X, ) er we mean the space

(@ X7> = {x = (Ty)ner Ty € X, Vy e, x| := sup || < oo} :
~e

~ell o0
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Proposition 2.7. Let X be a Banach lattice and 1 < p < o0:

(1) If X is p-convez, there are a family I of probability measures and a lattice isomorphism

X - (@ L)

such that ||z| < ||Jz|| < K@ (X)|z| for all z € X.

(2) If X is (p, 0)-convez, there are a family ' of probability measures and a lattice isomorphism

72 = (@ Lyl

pel’

0

o0]

such that |z| < |Jz| < O X)|z| for all x € X, where v, = (p*)z%* is the constant
from Theorem [2.] assoczated tor =1.

Clearly, every closed sublattice of a p-convex or (p, o0)-convex Banach lattice inherits the corre-
sponding property. Therefore, the above conditions characterize p-convexity and (p, c0)-convexity.
Similarly, one can characterize the p-concave and (p,1)-concave Banach lattices as quotients of
¢1-sums of L, and L, -spaces, respectively. As a corollary of Proposition , we obtain an alter-
native proof of the fact that every (p, o0)-convex Banach lattice (and, by [20, Theorem 2.8.7] every

(p, 0)-convex operator) is g-convex for every g < p, with a constant that explodes like (p — q)ﬁ
when ¢ — p~. To our knowledge, there existed two proofs of this fact: The proof presented in [6],
Corollary 16.7] exploits a connection between (r, s)-concave operators and (r, s)-summing operators
on C(K)-spaces (see [6, Theorem 16.5]) to apply Pisier’s generalization of Pietsch’s factorization
theorem for (r,1)-summing operators ([23, Theorem 2.4], see also [27, Theorem 21.3]). On the
other hand, the proof presented in [I7, Theorem 1.f.7] uses a probabilistic argument. The argument
we provide here also relies on a result of Pisier (namely Theorem , which corresponds to [23]
Theorem 1.1] instead of [23, Theorem 2.4]), but has some advantages over the other proofs. First
of all, it is more direct than the one presented in [0], as it does not require one to go through
(p, ¢)-summing operators. On the other hand, this proof is conceptually simpler than that of [17],
and does not require probabilistic techniques.

Corollary 2.8. Let 1 < p < o and assume that X is a Banach lattice satisfying an upper p-
1

estimate. Then it is q-convex for every 1 < q < p with constant K9 (X) < <ﬁ) T K9 (X).

Proof. First of all, by Propositionwe know that X lattice embeds with distortion 7, K (") (X) into

a Banach lattice of the form (& ser Lp oo (1t )) with p a probability measure for every pu € I'. Now,
let us fix 1 < g < p, and observe that by ‘-) each of the factors L, . (u) is lattice isomorphic to

Lgflo(u), with distortion <£) . Now, it suffices to show that L;E),lo (p) is g-convex with constant 1:
Given f1,...,fn € Lz[fg,o(p) and a measurable set A with p(A) > 0, it follows that

([ ) o r4) ) < )

"eb—‘
»Q\»—‘
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Taking the supremum over all the sets A, we obtain

(Zw) " (anLm )

Since g-convexity is preserved under taking f..-sums, sublattices and isomorphisms, we conclude
1

that X is g-convex with constant K@ (X) < (ﬁ) "y, KP(X). i

Remark 2.9. Observe that the previous argument shows that for every 1 < ¢ < p, L, o endowed

with the norm || - | 1 Ll is g-convex with constant 1, while it simultaneously satisfies an upper p-

estimate with constant 1. In general, by the above results, obtaining information on the structure
of ((—D ser Lp, ol )) will have implications for arbitrary Banach lattices with upper p-estimates. In

particular, a direct proof of the fact that L, is (p, q)-convex for every ¢ > p suffices to show that
every (p, o)-convex operator is (p, g)-convex following the same scheme of proof as in Corollary 2.8
We note that this strategy is part of a more general line of reasoning; for example, understanding
the ideals of universal spaces was used in [3] to deduce information about separably injective Banach
lattices.

The following example illustrates that the reverse implication in Corollary is not true:

Example 2.10. Let 1 < p < . The space X = {,({,), formed by the sequences of vectors
T = (z)ren such that xj € ¢, for every k € N and |Z|x := ||(|zk/e,)x]e, is finite, does not satisfy
1

an upper p-estimate, but it is g-convex with constant (p_q) for every 1 < ¢ < p.

Proof. We start by showing that X is ‘s convex for any 1 < ¢ < p. Recall that both ¢, and ¢, ., are

g-convex with constants 1 and (p’%q)a, respectively. Given 7 = (Ié))keN eX,i=1,...,n, we
have
n L n . n 1
. a i q
(Seor)] - ((2 o) ) :H(| (Swr) )
i=1 X ) el x i=1 o/l
" 1 " 1
q
< ((2 01, ) ) - ‘(2 (11,
=1 Elle, o =1 P,00
1 n 1 1 n 1
p q < ) q a p q —(i)|1a q
< (-2 ), )" - 7Ol )
(p o Q> (; g Lp,o0 pP—q ; X

where the first and second inequalities follow from the g-convexity of ¢, and ¢, ., respectively.

To show that X does not satisfy an upper p-estimate (i.e., it is not (p, c0)-convex), let us assume
that the coordinates in ¢, and ¢, are indexed starting at 0. Let us fix n > 1 and denote by

(ej)52o the canonical basis of ¢,. For k = 0,. — 1, we write a®) = Z;:& Q(k+j),€; for the cyclic

1 1
permutations of the coefficients oy, = (k + 1)7* — k»* over the set {0,...,n — 1}. Here, by i, we
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mean ¢ mod n. We consider for i = 0,...,n — 1 the (finite) sequences () = (g;,(j)),gozo € X given by
.r,(f) = Qi€ for k=0,...,n—1 and x,(;) =0 for k = n. It is clear that for every i,

1
n—1 P
; 1
x = (@) i Zolee = Haw)i oo, =1, so [z ) = mno.
177 x = (i )F
1=0

On the other hand, for every k = 0, . -1,

\/’zk’_Zak+z z_a(k)7

| )n—l
i= k=0
1

where A, = (Z;:Ol 0/;) " is the norm of a® in ¢, for every k, and n¥ is the norm in ly o« of the

SO

n—1
‘%

Lp,e0

constant 1 vector on the set {0,...,n — 1}. It is not difficult to check that A,, diverges as n — oo.
1
More specifically, ay ~ (k+ 1)_% uniformly in &, so A,, ~ (Z:Zl k_l) ? which diverges. To conclude
1
’X / (Z?:_ol HT@)\&) " = A, are not uniformly

bounded, so X cannot be (p, o0)-convex. |

the argument, observe that the quotients H\/;:ol 17|

Remark 2.11. Observe that for the previous argument to hold, it suffices to consider Kp,oo(ﬁ;‘)neN,
an £, -sum of £ with n € N. However, it is essential that the dimensions of the inner terms in the
sum increase.

3. BANACH LATTICES WITH UPPER p-ESTIMATES VS. SUBLATTICES OF (,-SUMS OF L o

Proposition points out a fundamental difference between p-convexity and upper p-estimates:
While the class of p-convex Banach lattices (with constant 1) and the class of closed sublattices
of {x-sums of L,-spaces can be identified isometrically, the class of Banach lattices with upper
p-estimates (with constant 1) and the class of closed sublattices of £,,-sums of L, ,-spaces do not
coincide isometrically, but only isomorphically. Indeed, in this section, we provide an example of a
Banach lattice that satisfies an upper p-estimate with constant 1 but does not embed isometrically
into any ¢,-sum of L,, ,.-spaces. Moreover, we show that L, o, endowed with the different renormings
from ([2.5)) can always be isometrically embedded into an £,,-sum of Lz[ol,lo, concluding that the choice
of norm for L, o is not the cause of the obstruction.

3.1. A finite dimensional counterexample. A natural question that arises from Theorem
and Proposition is whether the constant v, can be improved to 1. In this section, we will show
that the answer is generally negative.

Let X,Y be Banach lattices and let 1 < C < o0. We say that X C-lattice embeds into Y if there
exists a lattice isomorphic injection T : X — Y such that C7'|z| < |Tz|| < |z for all x € X. In
this case, we call T" a C-lattice embedding. If C' = 1, then T is a lattice isometric embedding. A
Banach space with a normalized 1-unconditional basis can be regarded as a Banach lattice with
respect to the coordinate-wise order.
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Theorem 3.1. Let X be a Banach lattice with the order given by a normalized 1-unconditional
basis (e;). Denote the biorthogonal functionals by (ef). For any C = 1, the following statements
are equivalent:
(1) For each normalized finitely supported a = Y.  ae; € Xy and every ¢ > 0, there exist
b =" befe X andd = (d;)f; € RY so that Y a;b; > 1 —¢, 3" d; = 1 and
130 biek [P < CP* X di for any T < {1,...,n}.
(2) There is a set I' of (probability) measures such that X C-lattice embeds into the space

(@#er Lo (N)) o

Proof. (1) = (2) Let a € Xy be normalized and finitely supported, and let € > 0 be given. Obtain
b and d from (1). Let (U;)", be a measurable partition of (0,1) such that A(U;) = d;, 1 <i < n,
where A denotes the Lebesgue measure. Define

Sae: X — L,0(0,1) by S,c <Z clel> i i zXUI.

i=1 i=1

We have
|Sqcal = J |S,.cal d\ = Zalb >1—ec.

On the other hand, if | Y., c;e;| < 1 then there exists I < {1,...,n} so that

|Sacc| = A (U U)_p* f |S,cc dX = (Z di> o > leilbs

iel iel iel

'LEI Z
B <Z |cl|ez,2b e; > < (Z di) B Zbiez‘
ze] el el el

<

Let I' be the Cartesian product of the set of normalized finitely supported elements in X, and the
interval (0,1). It is now clear that the map 7' : X — (@(a,e)eF L, (0, 1))OO given by

Tec= (O_IS(I,EC>(G,8)€F
is a C-lattice embedding.

(2)= (1) Let T : X — (C_D,ueF LP»OO(“))OO be a C-lattice embedding. Suppose that a = " | a;e; is
normalized and € > 0. For each p € I, let P, be the projection of (@uer LP’OO(“))OO onto the po-th

component. There exists p such that C|P,,Ta| > 1—¢. Let f; = P,,Te;. Choose a py-measurable
set U such that 0 < p(U) < oo and

C’f P, Tadu, > (1— 6),u0(U)L*.
U
Set U; = U nsupp f; and m = (3 1,u0(U))i*. Define

C\, fid ,

m ’ mp*
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We have d; >0, >, d; = 1 and

a,bz—f Zazf,d,uo—J wladpy >1—c¢.

iq4=1

On the other hand, suppose that I < {17 coonb I ces| < 1, then

<i Cieiazbie;k Zcz i = J lei do
i=1 el iel zEI Ui jer
(o) < (5a)”
el el

C
< —|[Pu T i€
b e*Hp < Cp ZlEI
Remark 3.2. If X is a two-dimensional Banach lattice that satisfies an upper p-estimate with
constant 1, then both conditions (1) and (2) of Theorem hold with C' = 1. Indeed, let (eq,e2)
be a normalized 1-unconditional basis for X. Suppose that a = aje; + ases is normalized and
% Ed *
non-negative. Choose b = byef + baes € X* such that {(a,b) = 1 = |[b]. Define d; = b /(b + b5 ),
1 = 1,2. Note that X™ satisfies a lower p*-estimate with constant 1 and ej and e} are disjoint, so

This proves that || >} o

el

*

V05 = bt P+ fbacs P < o =1

It is easy to check that |, bieX||P* <., d; for any I < {1,2} and d; + dy = 1.

iel
Corollary 3.3. Suppose that X is a Banach lattice with the order given by a normalized 1-
unconditional basis (e;) that C-lattice embeds into ((‘B#er Lp,oo(u))w. For any normalized b =
Yo bief € X3 and any I; < {1,...,n}, 1 < j < m, such that 37", x1, = Ixq,.n) for some
l e N, we have

2

Proof. Choose a normalized a = 3" | a;e; € X, so that > | a;b; = 1. First, assume that [(e;)!" ]
is uniformly convex. Let ¢ > 0 be given. There exists § > 0 so that if ' = Z bere Xx, V] =1

=1"i"1

and (a,b’) > 1 -6, then |[b— /| <e. By Theorem [3.1] there exists ' € X% and d = (d; )l:1 e R" so
that " d; = 1, {a,t/) > 1 —d and | 3., bief|P" < CP" 3., d; for any I < {1,...,n}. Tt follows
that for any I < {1,...,n},

Z bzef

el

.....

< OP'.

Zb-e;" ’

1€l

<> 1o~ vkt

iel

+ 2 bier|l <

iel

5\I\+C(Zd>l*.

iel

Now assume that [; < {1,.. n} 1 < j <m, are such that >7" | x1, = Ixp
Aj = €|Ij| and Bj = C(Z el Z‘)p . Then

(g > bier

ZGI]'

ny for some [ € N. Set

.....

1

)= (G )1* <Gy o)
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<iAj+(iB§'*>p*_5Z|]|+C<22d> < enl + Cli*.
j=1 j=1

j=11€el;
Taking ¢ | 0 gives the desired result.

We now return to a general X with a normalized 1-unconditional basis (e;). Given a normalized
b=>" befe Xt and e > 0, there is a uniformly convex lattice norm || - || on [(e;)?_,] such that
lz| < ||zl < (14 ¢)|z| for any = € [(e;)i-,] (take, for instance, || - || = | - | + || - [ for 6 > 0 small
enough, which is strictly convex and hence uniformly convex, since [(e;)7,] is finite dimensional).
Set u; = e;/||ei]], uf = e/||e]| and b = >, ViuF = b/||b]|. Note that (u;)™; is a 1-unconditional

zlzz

basis for [(e;)P] = [(w;)!;] and ¥’ is || -||-normalized. Moreover, if T : [(e;),] — (@uer L, (u))oo
is a C-lattice embedding, then

To =Tz : [(w;)iq] (@ L, >

pel’ ©

is a (1 +¢)C-lattice embedding. Assume that I; < {1,...,n}, 1 < j < m, are such that D" | x1, =
Ix11,...ny for some [ € N. By the first part of the proof,

>X<

DD b (1+e)P CPl.
j=11]|| i€l;
Since [|b]| < 1+ ¢, for any I < {1,...,n} we have
1
Mithurll = || Y bief || = Zbe
i€l ‘wa 1€l i€l
Thus,
p* % *
Z Diber|| < (1+e)PC
el
Taking € | 0 gives the desired result. O

The next example shows that 7, cannot be made to be 1 in Proposition or Theorem [2.4}

Example 3.4. Suppose that 1 < p < c. Denote by C, the infimum of the set of constants C'
so that every Banach lattice satisfying an upper p-estimate with constant 1 C-lattice embeds into

(@«/er me(u))oo for some set of measures I'. Then C’g* = 2(?f;:*) > 1.

Proof. Let X = R? so that the norm on X* is

(b, ba, bs) [ xx = manc{ (5] + (b;] + [be))P*) 7™ : {3, 5, k) = {1,2,3}}.

It is clear that the coordinate unit vectors form a normalized 1-unconditional basis for X. Suppose
that b = (b1,be,b3) € X* and I,J are disjoint non-empty subsets of {1,2,3}. Without loss of
generality, we may assume that I = {i} and J = {j, k}, where 4, j, k are distinct. Then

* * * * *
[ox1 5 + 10X 5x = 10" + ([b5] + [b&])” < (B[ %
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Thus, X* satisfies a lower p*-estimate with constant 1. Hence, X satisfies an upper p-estimate
with constant 1. Suppose that X C-lattice embeds into some (C—B'yer Lppo(,u))oo. The vector (1 +
1
2P*)75% (1, 1,1) is normalized in X*. By Corollary ,
]. * * K *
— (|(1,1,0)[P 1,0,1)|]? 0,1, D)) <207
oo UL L0+ (0, D + (0,1, 1))
Thus,
*
3-2° <
2(1 + 2r*)
Taking infimum over the eligible C’s gives the desired result. Direct verification shows that

3.20%
2(1+2r%)

>1if 1 <p<oo. O

Question 3.5. Is v, = (p*)z%* the optimal value of the constant C, defined in Example

As a consequence of the previous discussion, we find that the free Banach lattices associated
to the classes Cp, », of Banach lattices satisfying an upper p-estimate with constant 1, and &), o, of
L, (1) spaces, are not lattice isometric in general, even though they are lattice isomorphic (see [§]).
Recall that, given a class C of Banach lattices and a Banach space E, there exists an (essentially
unique) Banach lattice FBLC[E] together with a linear isometric embedding ¢ : E — FBLC[E] with
the property that for every Banach lattice X in the class C and every bounded operator T : £ — X,
there exists a unique extension T : FBLS [F] — X as a lattice homomorphism such that fqb =T
and |T| = |T|. This space is called the free Banach lattice generated by E associated to the class
C. In [8, Theorem 3.6] it was established that for every Banach space E, the norm of FBL»*[E]
is y,-equivalent to the norm of FBLY*>[E]. However, we will see that this isomorphism constant
cannot be made 1.

In order to show this claim, we need to recall the following property. A Banach lattice X
is said to have the isometric/lizttice—lifting property if there exists a lattice isometric embedding
a : X — FBL[X] such that idxa = idx. This property was introduced in the article [2], inspired
by previous work of Godefroy and Kalton [9] on Lipschitz-free spaces. Notably, Banach lattices
ordered by a l-unconditional basis have this property (see [2, Theorem 4.1]). In [2I, Theorem
8.3] an alternative proof of this fact was given, which also worked when FBL[FE] was replaced by
FBL®[E]. We now show how to generalize these results to any class C.

Proposition 3.6. Let C be a class of Banach lattices, X a Banach space with a normalized 1-
unconditional basis (e;);, viewed as a Banach lattice with the order given by the basis, and C > 1.
The following are equivalent.

(1) X C-lattice embeds into some (@yer XA,)OO with X, € C for every yeI.
(2) For every operator T : X — X, there exists a unique extension T : FBL[X] — X satisfying

|17 < C|7].
(8) There exists a unique extension idy : FBLC[X] — X of the identity idx : X — X satisfying
lidx| < C.

(4) X C-lattice embeds into FBL[X].
Moreover, the C-lattice embedding oo : X — FBLE[X] in (4) can be chosen so that idxo = idy.
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Proof. (1) = (2) is an adaptation of [8, Proposition 2.5] and (2) = (3) is clear.

(3) = (4) Recall that by either [2, Theorem 4.1] or [2I, Theorem 8.3] with p = 1 there is a
lattice isometric embedding oy : X — FBL[X], the free Banach lattice (which can be seen as
the free Banach lattice associated to the class of all Banach lattices), such that i/Ci;Oég = idyx
(here, idy FBL[X] — X). Moreover, since C is a class of Banach lattices, the formal identity
j : FBL[X] — FBL[X] is a continuous norm one injection such that idxjon = idyx (now, we are
abusing the notation by also denoting idy : FBLC [X] — X the extension of idx to FBLC[X] given

in (3)). We claim that a := jag : X — FBLS[X] defines a C-lattice embedding. To prove the
claim, simply note that for every reX

*H | < ”A” Jidx o] < |azlpprery < laozlrsipx < ).
dx

This also proves the additional claim.

(4) = (1) follows from [8, Proposition 2.7], as FBLC[X] embeds lattice isometrically into an £,,-sum
of spaces in C. O

We can apply Proposition [3.6] to the Banach lattice X constructed in Example [3.4] to conclude
that, since X does not 1-lattice embed into (@uer Lpuw(“))w for any choice of measures I', the

extension z/d; of the identity on X to FBL**[X] cannot be contractive. However, if we instead
consider FBL»*[X] (which by [8, Theorem 3.6] coincides as a set with FBL**[X], with an
equivalent renorming), we observe that in this setting the norm of the extension z/d; becomes
lidx| = 1, since X belongs to the class C, . Therefore, the norms | - |pppapex and | - [pprese(x)
cannot agree.

3.2. The renormings of weak-L,,. In this paper (and also in [§]), we have chosen to equip L, (1)
with the norm
Pl = swp (3 [ 1fldn
0<p(A)<oo
However, for each 1 < r < p, we could have equally chosen to equip Lpoo(u) with the norm

_1
gy = s wi= ([ 1)
PO <p(A)<oo

as it also defines a lattice norm on L, (p) with upper p-estimate constant 1. For this reason, it is
natural to ask whether the ambiguity in choosing a norm on L, o (p) is the reason why ~, cannot
be chosen to be 1 in [8, Proposition 3.3 and Theorem 3.6].

E\H

The aim of this subsection is to show that (L, (u), | - ) embeds lattice isometrically into

o,
a Banach lattice of the form (@uer LI[,%!)O(M))OO. As a consequence, we deduce that the above

renormings cannot eliminate the constant v, in [8, Proposition 3.3 and Theorem 3.6].

Recall that every Banach lattice with upper p-estimates is r-convex for every 1 < r < p, with a

constant that might explode like (p — r)~ v as 7 approaches p. Moreover, every r-convex Banach
lattice has an equivalent lattice norm whose r-convexity constant becomes 1 [I7, Proposition 1.d.8].

As we saw in Remark it turns out that in the case of L, ., we can use the L;[Z(]-)o—renorming
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to actually renorm L, so that the upper p-estimates constant and the r-convexity constant are
simultaneously 1. Now that we have clarified the role of the renormings, we can proceed with the
main goal of this section. We begin with some notation and technical lemmata.

Lete = (1,...,1) € R" and let (e;); be the unit vector basis for R". Let 8,0 € R, | 5]+, [b]1 < 1,
and let 0 < s < 1. Define a : R} — R by

(3.1) a(z) = (B 2)"" (b ),

where - is the dot product on R”. Clearly, « is positively homogeneous.

Lemma 3.7. There exists d = (d;)}_, € R} with ||d||; <1 such that a(x) < d-x for any x € R}
Proof. Let d = (1 —s)3 + sb, so that d € R and ||d|; < 1. Given z € R}, by Young’s inequality for

products, we have that
a(w) = (B-2)* (b-2)' < (1= )(B-2)+ s(b-2) = (L— )8 +b) -2 = d-.
O

Lemma 3.8. Let (2,3, 1) be a measure space. Suppose that (a;)i, € R and (U;)I, is a disjoint
sequence in X with 0 < p(U;) < o so that C' == (3 1,u( Z))%f | ZZ L @iXu | L < 1. There

is a measure v on X and a lattice homomorphism S : Ll (1) — LY (1) so that |S| < 1 and

|5y aixu)| = €7

Proof. Define M = >7" | u(U;), by =
B,b€e R and ||b|; = 1. Moreover,

S ==

Lb = (b)iy and B, = Mo p(Ui)aj, B = (B)i,. Clearly,

|8y = M»~!

Take s = p*(L — 1) and define o as in (3.1)). Note that a(e) = |B]17° [b]; = C"'7%) < 1. Let d be
given by Lemma . Define a measure v on ¥ by v(A) = " | W and a linear operator

n r 1b

§: Ll = LfLw) by Sf=MFY T

=1

Clearly, S is a lattice homomorphism. Note that V(Un: U;) = |d|1 < 1. Hence,
H (Z CMXU) Z = M7 ) ajb;
i—1 =1

—C.
Lr(p)
On the other hand, let f € LI (1) with | f| < 1. If A€ S with 0 < v(A) < oo then

fXU

’L
P

1(V)

iXU;

n r—lb

z a; i — r
| 1sraw =yt | uwwwwlZa{f £l dy

i=1 AnU;
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n

1 r—1

T L (AnU;)

Ly (p)
1 1

n AnU, * w(AnU)\" ?
<(;6i“(ﬂ(m) >> (Zb )> .

Let z = (“(ﬁggi))?zl eR”. Since 1 — s = f—:, it follows from Lemma that

L% (1)

1

J |Sfldv < (5 - a:)lp;* (b:v)zT* = a(a:)z%* < (x-d)PF = V(A)z%*.

A

Hence, |Sf]| < 1. i
We are now in disposition of proving the claim that we made at the beginning of the subsection.

Theorem 3.9. Suppose that (Q, 3, 1) is a measure space and 1 < r < p. There is a set ' of
1
ver Ly (V).

Proof. Let T' be the set of simple functions f = >, | a;xy,, where n € N, a; > 0, 0 < p(U;) < w0
and (U;)_, is a disjoint sequence in ¥ with

¢r = (Lmn) >
1=1 =1
[r] [1]

For each f € I', according to Lemma , there is a lattice homomorphism Syt Lypwo(p) = Lpxo(vy)
such that |[Sy| < 1 and |Syf[ = C%. Define

T: Ly <@ Lyl (v ) by Tg = (5¢g)er-

fer

measures on 3 so that L,[f:]oo(,u) embeds lattice isometrically into (P

3 =
S

<1

7‘

Clearly, T is a lattice homomorphism and || 7’| < 1. Suppose that g € L wo(p)y with g, = 1.
P,00
For any € > 0, there exists a non-negative simple function / such that g > h and [h[, - >1—e.
P,00

Write h = 3" | a;xu,. There exists I < {1,...,n} so that

(;uwi))l_ Seon|

iel

Then f:= ). ;aixu, € with Cf = 1 —e. Thus,

ITgl = 1559l =[S 11 = CF = (1 =€),
so that |T'g| = 1. This shows that T" is an isometric embedding. i

— |l =1

4. FACTORIZATION OF CONVEX AND CONCAVE OPERATORS

There are several results in the literature that provide methods of factoring (p, ¢)-convex/concave
operators through (p, ¢)-convex/concave Banach lattices. Namely, in [25, Proposition 5] it is shown
that every g-concave operator factors through a ¢g-concave Banach lattice, and the bi-adjoint of every
p-convex operator factors through a p-convex Banach lattice. In [20, Theorem 2.8.7] one can find
analogous statements for cone g-absolutely summing operators and g-superadditive Banach lattices
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(i.e., (g, 1)-concave operators and Banach lattices with lower g-estimates) and for p-majorizing
operators and p-subadditive Banach lattices (i.e., (p, o0)-convex operators and Banach lattices with
upper p-estimates). Finally, in [24], the approach of [20] was further explored to cover the setting
of g-concavity and p-convexity, establishing the existence of canonical factorizations for g-concave
and p-convex operators that satisfy certain maximality /minimality properties, as well as a duality
theory for such factorizations.

The aim of this section is to extend these results to an abstract setting of operators satisfying
general convexity and concavity conditions, recovering as a particular case the analogues of [24] for
(p, 0)-convex and (g, 1)-concave operators. We begin by considering operators whose domain or
target space is a Banach lattice, which include concave and convex operators as particular cases,
respectively. Namely, in Section [4.1] we identify suitable classes of factorizations for these operators
in terms of the sets that they induce in the corresponding Banach lattice, and we devote Section 4.2
to introducing two types of convex sets associated to such operators and investigating their duality
relations (see Theorem [.10]). Next, in Section we define (7, 0)-convex and concave operators
and Banach lattices as a general version of Definition [2.1]and use the sets introduced in the previous
subsection to establish that such operators admit factorizations through such Banach lattices. These
factorizations also satisfy certain minimality and maximality properties with respect to the classes
of factorizations introduced in Section [4.1} as was the case in [24, Section 2] (see Theorems [1.17]
and . In particular, we improve [20, Theorem 2.8.7] in the following way:

Theorem 4.1. Let E be a Banach space and X a Banach lattice.

(1) Let T : E — X be a (p,0)-convex operator. There ezist a (p,o0)-convex Banach lattice Yy
with constant 1, and operators Uy : E — Yy and Vi : Yy — X, so that Vy is an injective, in-
terval preserving lattice homomorphism such that Vo(By,) s closed in X (i.e., Vi is of Class
C) and T = VoUy. Moreover, if there exist a (p,0)-convexr Banach lattice Y and operators
U:E—-Y andV :Y — X such that V is of Class C and T = VU, then there is a Class C
operator ¢ : Yo — Y so that U = ¢Uy and Vo = V.

E T X
NP7/
Up { Vo

4
Y,

(2) Let T : X — FE be a (p,1)-concave operator. There exist a (p,1)-concave Banach lattice
YO with constant 1, and operators U° : X — Y9 and V' : Y — E, so that U° is a lattice
homomorphism with dense range (i.e., U® is of Class D) and T = VU°. Moreover, if there
exist a (p,1)-concave Banach lattice Y and operators U : X — Y and V : Y — E such that
U is of Class D and T = VU, then there is a Class D operator ¢ : Y — Y so that U = ¢U
and V¢ = V.



20 E. GARCIA-SANCHEZ, D. H. LEUNG, M. A. TAYLOR, AND P. TRADACETE

X T E
NP
U° Y A%

¢
o

Moreover, we show in Section that these canonical factorizations satisfy a duality relation
similar to the one presented in [24, Theorem 5]. Finally, in Section we apply the abstract theory
developed in the previous sections to factor operators which are simultaneously (p, ps)-convex and
(q, g2)-concave, for p, € {p,0} and ¢, € {1,q}. The case p, = p and ¢ = ¢ was already covered in
[24] Theorem 15], whereas Theorems and cover the remaining three cases.

4.1. Geometry of factorization. We start by establishing suitable classes of factorizations for
convex and concave operators. The definitions are motivated by results in [24]. Let X,Y be Banach
lattices and let E' be a Banach space. Recall that a positive linear operator T': X — Y is interval
preserving, respectively almost interval preserving, if T[0, x| = [0, Tx], respectively, T'[0, z] is norm
dense in [0, Tz], for any x € X, [20, Definition 1.4.18]. A linear operator T : X — Y is of

(1) Class C if T' is an injective, interval preserving lattice homomorphism such that 7'(Bx) is
closed in Y. Note that T is necessarily bounded, and hence T'(Bx) is bounded in Y.

(2) Class D if T is a lattice homomorphism with dense range. Note that in particular T is
almost interval preserving.

Let T : E — X be a bounded linear operator. A triple (Y,U, V) is a Class C factorization of T
if Y is a Banach lattice, U : E — Y and V : Y — X are bounded linear operators so that V is
of class C and T' = VU. A triple (Y,U,V) is a Class D factorization of a bounded linear operator
T:X — EifY is a Banach lattice, U : X — Y and V : Y — FE are bounded linear operators
so that U is of class D and T' = VU. Two Class C, respectively Class D, factorizations (Y;, U;, V;),
1= 1,2, of T are equivalent if there is a Banach lattice isomorphism ¢ : Y; — Y5 so that Uy, = (U3
and Vi = Vi, Two closed bounded subsets By, By of E are equivalent if there is a positive constant
c so that ¢c'B; € By < ¢B,. As we will see in this section, there is a correspondence between Class
C factorizations of an operator T : ' — X and subsets of X satisfying certain properties, and a
similar situation operates for Class D factorizations. Before proceeding with the precise statements,
let us recall the following well-known fact:

Lemma 4.2. Let E be a Banach space and let B be a closed bounded convex circled subset of E.
Then the Minkowski functional p of B defines a complete norm on span B so that B is the closed
ball with respect to p.

Proof. Let C be a finite constant so that B < C'Bg. Recall that the Minkowski functional of B
is given by p(y) = inf{\ > 0 : y € AB} for every y € E (y ¢ span B if and only if p(y) = o). If
y € span B and p(y) = 0, then

ye () AB < ()ACBE = {0}
A>0 A>0

Hence p is a norm on span B.
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Suppose (y,) is a sequence in span B so that > p(y,) < 1. Then there exists a sequence (A,) so
that y, € A, B for all n and >, A\, < 1. In particular, |y,| < A\,C and hence Y] |y,| < C. So > yn

converges in F to some y. Since
m m

dymed N\-BCSB
n=1 n=1

for all m and B is closed, y € B. If k£ > m,

k k 0
Y vwe > MBS > \-B.
n=m+1 n=m+1 n=m-+1
We take the limit as k& — oo in the space E. Then y — >y, € >, A, - B. Hence, p(y —
> Yn) — 0 as m — co. This proves that p is complete.

If y € B, then obviously p(y) < 1. Conversely, suppose that p(y) < 1. For any A > 1, { € B.

Since B is closed in F, y € B, as required. O
Regarding Class C factorizations, we have the following correspondence:

Proposition 4.3. Let T': E — X be a nonzero bounded linear operator.

(1) The map (Y,U,V) — V(By) is a surjective correspondence between the set of Class C
factorizations of T and the set of closed bounded convex solid subsets of X that contain
c¢T(Bg) for some ¢ > 0.

(2) Let (Y;,U;,V;), i = 1,2, be two Class C factorizations of T. The following are equivalent:
(a) There is a bounded linear map ¢ : Yy — Yy such that Uy = ¢U; and Vi = Vap. In this

case, ¢ is necessarily of Class C.
(b) There is a positive constant ¢ so that Vi (By,) € cVa(By,).
As a result, two Class C factorizations (Y1, Uy, V1) and (Ya, Us, Va) are equivalent if and only
if Vi(By,) and V3(By,) are equivalent.

Proof. (1) If (Y,U, V) is a Class C factorization of T', then V' is of Class C and hence V' (By) is a closed
bounded convex and solid subset of X. Since T' = VU is nonzero, T(Bg) = VU(Bg) < |U|V(By).

Thus, V(By) contains ¢I'(Bg) with ¢ = m > 0.

Conversely, suppose that B is a closed bounded convex solid subset of X that contains ¢T'(Bg)
for some ¢ > 0. Let Y = span B and let p be the Minkowski functional of B on Y. Then (Y, p) is a
Banach space by Lemma [4.2] Since B is solid, Y is a Banach lattice in the order inherited from X.
Define U : E — Y by Uz = Tx. Since T(E) € Y, U is a well-defined linear operator. Moreover,
U(Bg) = T(Bg) < 1B. Hence U is bounded. Let V : Y — X be the formal inclusion. Then V is
of class C. Clearly, T'= VU. Thus, (Y,U,V) is a Class C factorization of T

We have shown that the correspondence (Y, U, V') — V(By) is well defined and surjective between
the stated sets. Let us verify injectivity. Assume that (Y;, U;, V;) are Class C factorizations so that
Vi(By,) = Va(By,). Then, since V; is an injective lattice homomorphism, the operator ¢ = V5 V] :
Y) — Y, is a well-defined lattice homomorphism and ¢By, = By,, so it is contractive. Similarly,
= VflVZ 1 Yo — Y] is a well-defined and contractive lattice homomorphism. It follows that
Y, and Y5 are isometric Banach lattices, and moreover Uy = (tU; and Vi = Ve, so both Class C
factorizations are equivalent.
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(2) (a) = (b) From the assumption, we have Vi (By,) = Vo¢(By,) < |¢|V2(By,). Let us verify
that ¢ is of Class C. Recall that V5 is injective. For any v € Y7,

Va|gw| = [Vagu| = [Viv| = Viv] = Vaglul.
Hence |¢pv| = ¢|v|. Similarly, if v € (Y1), then
V2[0, ¢v] = [0, Vago] = [0, Viv] = V40, v] = Va([0, v]).

Thus [0, ¢v] = ¢[0,v]. This shows that ¢ is an interval preserving lattice homomorphism. It is
injective since Vi = Vh¢ is injective. Finally, ¢(By,) = V; '(Vi(By,)) is closed since V;(By,) is
closed. Therefore, ¢ is of Class C.

(b) = (a) Since Vi (Y1) € Va(Y3) and V5 is injective, ¢ = V5 'V} 1 Y] — Ys is a well-defined linear
operator. If u € By, then ¢(u) = Vo "Viu € Vy '(Vi(By,)) € cBy,. Thus, ¢ is bounded. By the
definition of ¢, V; = V4¢. If x € E, then

oUrx = Vo WUz = Vy ' Te = Vy 'Wolsx = Uy
Thus ¢U; = Us. The final statement follows by applying (2) in both directions. O
On the other hand, Class D factorizations can be characterized as follows:

Proposition 4.4. Let T': X — E be a nonzero bounded linear operator.

(1) The map (Y,U,V) — U"Y(By) is a surjective correspondence between the set of Class D
factorizations of T and the set of closed convex solid subsets S of X so that c’'Bx < S <
¢I'~Y(Bg) for some ¢ > 1.

(2) Let (Y;,U;,V;), i = 1,2, be two Class D factorizations of T. The following are equivalent:

(a) There is a bounded linear map ¢ : Yy — Y such that Uy = ¢Uy and Vi = V. In this
case, ¢ is necessarily of Class D.

(b) There is a positive constant ¢ so that U (By,) € cUy '(By,).

As a result, two Class D factorizations (Y1, Uy, V1) and (Ya, Us, Vo) are equivalent if and only

if Uy (By,) and Uy *(By,) are equivalent.

Proof. (1) Let (Y,U,V) be a Class D factorization of 7. Since U is a lattice homomorphism,
U~'(By) is a closed convex solid subset of X. By the boundedness of U, U(Bx) < |U||By. Hence
Bx < |U|UY(By). Note that T # 0 implies that U # 0, so |[U]| > 0. Also, T(U (By)) =

VU(U~Y(By)) = V(By) € |V|Bg. Thus U='(By) < |V|T}(Bg). Again, |V] > 0 since V # 0.

Conversely, suppose that B is a closed convex solid subset of X so that c™!Bx < B < T~!(Bg)
for some ¢ = 1. The Minkowski functional p of B is a lattice seminorm on X. The kernel I := ker p
is a vector lattice ideal in X; p induces a lattice norm p on the vector lattice X /I by p(Qu) = p(u),
where ) : X — X /I is the quotient map. Let Y be the completion of X /I with respect to p. Then Y
is a Banach lattice. Let U := @ : X — X/I € Y. Then U is a lattice homomorphism; in particular,
U is bounded. By definition, U has dense range. Hence U is of Class D. Define V : X/I — E by
V(Qu) = Tu. Note that u € I implies that u € AB for all A > 0. Since T'(B) < Bg, Tu = 0. Thus,
V is well defined. If p(Qu) < 1, then uw € B. Hence, ||[Tu| < 1. So, V is bounded. Therefore, V/
extends to a bounded linear operator from Y into F, still denoted by V. By definition, VU = T.
Thus, (Y,U,V) is a Class D factorization of T
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To check the injectivity of the correspondence, assume that (Y;, U;,V;), i = 1,2, are two Class D
factorizations of T such that U; *(By,) = U; ' (By,), and let us define ¢ : Uy(X) — Y3 by wy = Usx
for every y = Uyz € Uy (X). Observe that

ker Uy = () AUT (By,) = () \U5 ! (By,) = ker Us.
A>0 A>0
Therefore, whenever U,z = U2’ it follows that Usx = Usa’, and hence ¢ is well defined. Moreover,
if y = Ujxr € By,, then z € U] *(By,) = U; ' (By,) and 1y = Usx € By,, so ¢ is contractive. Since
Uy and U, are lattice homomorphisms, U;(X) is a sublattice, and for every y = Uyz € Uy(X),
ly| = Uy|z| and t|y| = Us|z| = |Usz| = |ey|, so ¢ is a lattice homomorphism. Finally, U; has dense
range, so ¢ extends to Y] as a contractive lattice homomorphism. Interchanging the roles of U; and
U,, we can show that ¢ has an inverse operator, so it is an onto isometry from Y; into Y. Clearly,
U, = Uy and V; = Ve, so the factorizations are equivalent.

(2) (a) = (b) If ue X and Uju € By,, then Uyu = ¢pUyu € ¢(By,) < |¢|By,. Hence Uy ' By,
|6|U5 1 (By,). Let us verify that ¢ is of Class D. For any u € X,

|¢U1U’ = |U2U’ = Uz"l}‘ = (ﬁUl"U‘ = ¢‘U1’0|

Since Uy (X) is dense in Y7, this proves that ¢ is a lattice homomorphism. As ¢(Y;) 2 Us(X), ¢ has
dense range in Y. Therefore, ¢ is of Class D.

(b) = (a) If ue X and Uyu = 0, then u € AU; *(By,) for all A\ > 0. Hence u € AUy *(By,) for
all A > 0. Thus, Uyu = 0. This shows that the map ¢ : U;(X) — Y3 given by ¢(Uyu) = Usu is well
defined. Moreover, if Uju € By,, then u € U; *(By,) € cU; ' (By,). Hence ¢(Uju) = Usu € cBy,.
Thus, ¢ : U1 (X) — Y3 is bounded. Denote its bounded extension to Y; by ¢ again. By definition,
oUy = Uy. If u € X, then VooUru = VoUpu = Tu = ViUju. As Up(X) is dense in Y, Vo = V.
This completes the proof of the proposition. O

4.2. Duality of convex sets. Krivine’s functional calculus (cf. [I7, Section 1.d]) allows us to define

expressions such as (Z?:l \xllp)% for a finite quantity of elements x1, ..., x, in an arbitrary Banach
lattice X. However, we could replace the p-sum of n elements for an arbitrary n € N, by any norm
o on cq, as the only requirements for functional calculus to exist is that the function on R™ that
we want to represent is positively homogeneous and continuous. Therefore, we will use this fact to
study convex and concave operators and Banach lattices in a more general sense.

Throughout the following subsections, let o : cojo — R be a lattice norm on ¢y, that is
(1) Symmetric: o((si):) = 0((Sx@;))i) for any permutation 7 of N.
(2) Normalized: o(1,0,...) = 1.
Denote the norm on cqy dual to o by o*. That is, for any (s;); € coo,

o*((s7);) = sup {Zsiti S () € con, o((t;);) < 1} .

7

It is clear that ¢* is a symmetric normalized lattice norm on cq9. Moreover, taking o** = (0*)*,
we have 0** = 0. Let (e;) be the unit vector basis of ¢oo. For each n € N, define o,, : R — R by
on(ti,...,tn) = o3  tie;). Then o, is a monotone positively homogeneous continuous function.
As a particular case, we can take o to be the norm of ¢, for some 1 < p < o0 or the norm of c.
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In what follows, let X be a Banach lattice and E be a Banach space. Let 7 be another symmetric
normalized lattice norm on cqgg. The following sets are the main objects of our considerations.

Definition 4.5. (1) Let T : E — X be a bounded linear operator. Define

Cr° = {u € X :3(x;)iy € F such that |u] < o,(|Tx1], ..., |[Txy,|), T (2 sz\ez) < 1} .
i=1
Let T : X — FE be a bounded linear operator. Define
DL, = fue Xl > oulful ) ()i £ X — 7 (N17ule) <1},
i1

In the rest of the section, we consider the duality (X, X*). In particular, all polars are taken
with respect to this dual pair. Our aim is to show Theorem which establishes that the sets
defined above satisfy a duality relation. First, we need a linearization lemma. Let K be a compact

Hausdorff space, and let p be a regular Borel measure on K. Suppose that (h;)", <€ C(K) and
(g:)7-y < Li(p). It follows from the uniqueness of function calculus that

o(hyy...,hy)(t) = a(hi(t),... , hy(t)) for all t € K, and
o gy gn)(t) = 0 (g1(t),. .., gn(t)) for p-almost all t € K.

Lemma 4.6. Let y1 be a regqular Borel measure on a compact Hausdorff space K. Given (g;)’, <
Li(p) and € > 0, there is a sequence (h;), in C(K) such that ,(hi(t),...,h,(t)) < 1 for all
te K, and

fa;k(gl,..-,gn)du<

Z J higi dp + €.

i=1

Proof. First, assume that the functions (g;)?_; < L1(u) are simple. Without loss of generality, we
can assume that there is a Borel measurable partition (Aj)g‘?:l so that each ¢; = Z?zl aixa; for
some a;; (not necessarily positive). In this case, given € > 0, by the regularity of the measure p there
exist closed sets (C;)%_; and open sets (U;)h_; such that C; = A; = U; and p(U;\C;) < 4=, where
s = sup; op(ayj, . - -, an;) > 0 (recall that o is a lattice norm, so o (ay, . .., a,) = op(lasl, ..., |ax])).
Since the sets (C’j);?zl are pairwise disjoint and K is compact and Hausdorff, and thus, normal,
there exist pairwise disjoint open neighborhoods (V})?zl with C; < V; for each j. Let W; = U; NV}
and §; = 3% aijXw,. Then p(W;AA;) < p(U;\Cj), where AAB denotes the symmetric difference

7=1

of A and B, so

k
JIOZ(gl, e Gn) = O (G G i < Y (g ang)n(WAA) <

7j=1

W~ ™

Now, choose b;; so that b;ja;; = 0, 0, (by;,...,bs;) < 1 and

2 13
(s rng) < Sy - for1<j <k
’ ’ Zl 7T Au(K)
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Since K is normal, there are functions (u;)¥_; = C(K) such that 0 < u; < xw, and u; = 1 on C.
The functions h; = Zil biju; satisty |h;| < ZFl |bij|xw, and, moreover,

k k
Z Qi zy,u (Z binWj) .az d:u = f zgz d/u + J (Z bzg XWJ > Gi dﬂ
j=1 voo\j=1
< higi dp + J \hil|gi — il dpe + Z faijbij (xw, — uj)Xw,\c, i
J i—=1
r k
< | hagidp + Y aisbi (WV;AA) + p(W\Cy))
J j=1
[ € k
< hzgz d,lL + — Z aijbij for 1 << n.
J 2ks o

Observe that, if t € W,
O'n(h1<t), N hn(t>) < Un(blj; . 7bnj) < 1,
so a(hy(t),...,h,(t)) <1 for all t e K. Finally,

k

~ ~ € €

JJ*(gl,...,gn) dp < JJ*(gl,...,gn) du + 1 Z Ja;"L(alj,...,anj)XWj dp+ —
=1

4
k n e 8 n k €
=2 Z%WW) RIS
7j=1 \u=1 =1j4=
n r e n €
< hz zd + — ai'bi'+*
;N gian 2%2%2 7T g
n e e k e n
*
< ;J hig; dp + “j;an(alj,...,anj) + 5 < ;Jhigid,u—ka
This completes the proof for simple functions. Now, given general functions (g;)"; < L1(u ) for
every i = 1,...,n there exists a sequence (s;,)%_; of simple functions such that s} 1 ¢ and
Sim 1 9i almost everywhere so in particular 6*(S1m, .-+, Snm) 1T 0%(91, -+, gn) almost everyvvhere

By the dominated convergence theorem, for every ¢ > 0 there is a natural number M € N such that

3

, and
n+2

J|U*(gl"“’9n) — 0" (S1s - - Snar) | dpp <

g
i — S| dp < —— for 1 <i<n.
fm simldp < ——— forl<is<n

By the first part of the proof, for this M there exist some (h;)?, < C(K) such that we have
on(h1(t), ..., hy(t)) < 1forall t e K and

= £
. coySanr) dp < hisine d —
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In particular, h; € Beky and we have
€

hillgi — sim| dpn < i — Siv| dp <
[ g = s < [ = sl < =

for every 7. In order to obtain the result, we just use the previous inequalities:

€
fa*(gl, cey Gn) dp < fa*(slM, oy San) dpp + ——

+2
<;J

3
=1
We will use the previous lemma to linearize expressions of the form {Jul, o (|uf], ..., |uZ|)) for
uve X and uy,...,u; e X*.

O

Proposition 4.7. The following statements hold:
1) Suppose that u* € X* and (u;)*, < X. For any € > 0, there are (uF)*, < X* such that
( pp i=1 Y ) 1 /Ji=1
on(lutl,. .. Jupl) < [u*| and

Onllul, - Jun]), [0™]) < Z<uu up) + e

i—1
(2) Suppose that uw € X and (uf)’, < X*. For any € > 0, there are (u;)"_; < X such that
On(lual,- - |un]) < |ul and

n
(Jul, oy, Jugh)y < 3 usyuf) + e
i=1

Proof. 1t suffices to prove (2). (1) follows by applying (2) with X taken to be X* and o taken to
be o*.

Let ue X, (uf)l., < X*, and € > 0 be given. There exists a compact Hausdorff space K and

an interval preserving injective lattice homomorphism ¢ : C(K) — X so that ¢1 = |u|, where 1
denotes the constant 1 function on K. Set u* = o}(|uf],...,|u}]). Since |uf| < u* and /* is a
lattice homomorphism, |u;| := ¢*|uf| < *u* =: u. Hence, there are functions g; € L;(u) such that

ft; = g;-pt. Apply Lemma [4.6]to obtain the corresponding sequence (h;)7; in C(K) and set u; = ¢h;.
Then u; € X and

on(lur], - Junl) = on(tlhal, - - o tlhn|) = ton(Jhal, - - |hn|) < 01 = |ul.

Moreover,
(ul,on(luil, - Jugl)) = Lon(Flutl, ..o Clugl)) = (Lo (Kl .o uy))

= JU;:(gh-..,gn)d,u < Zth’gz‘du—Fs
St + < = 3ty 4.

1 i=1

NgE

.
Il

This completes the proof. O
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Next, we show that DL . < (C77)° (respectively, DY, < ( 727 )°) whenever T : E — X
(respectively, T': X — E) is bounded.

Proposition 4.8. The following statements hold:
(1) Let T : E — X be a bounded linear operator. Then u*(u) < 1 for all w € C7° and all

u* e DT .
(2) Let T : X — E be a bounded linear operator. Then u*(u) < 1 for all u € DI and all
ut e O
Proof. (1) Suppose that u € C77 and u* € DZ:J*. There exists (z;)/; in E so that |u| <
on(|Tx1], ..., |Tay|) and 7(37, |@i]e;) < 1. By Proposition [£.7(1), for any e > 0, there exists
(uf)', < X* so that o*(|uf|,...,|u*]) < |u*| and
(Jul, [*l) < Con(|Tarl, .. [Taa]), [u*]) < Y (Tasuf) + e
i—1
- Sty e < (Blake) v (Sirarler) +-=
=1 i—1 =1
Since u* € DI« and [u*| = ok (Juf],. .., [ui]), 7* (i, |T*v}|e;) < 1. Therefore, {|ul, |u*[) < 1, as
claimed.
The proof of (2) is similar. o

The next lemma will help us show the reverse inclusions.

Lemma 4.9. Let (u;)?_, and (uf), be sequences in X and X*, respectively. Then
D i) < Conlluals o funl), o (] s ).
i=1

Proof. Take a compact Hausdorff space K and an injective interval preserving lattice homomorphism
L C(K) — X sothat t1 = o, (Jua|, ..., |us]). Since |u;| < o, (|utl, ..., |u,l), there exists f; € C(K)4
so that ¢f; = |u;|. Set p = c*ox(Juy), ..., |u|) and p; = *(Juf]). Then 0 < f; < 1 and 0 < p; < p.
There are functions g; € Li(p)+ so that p; = g; - u. Then

>ty < Saloluth = 3 [ s = [ 355000 o

< j Ouls(B)s- s Fual) - (D), gu(8)) dp
= <0’n(f1, KR fn),O':L(,Uq, cee 7Mn)>

= Con(lual, - funl), on (il - Jug ).

We are now ready to establish the main result of this subsection.

Theorem 4.10. The following statements hold:
(1) Let T : E — X be a bounded linear operator. Then (C7.7)° = DTS

T* o* -
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(2) Let T : X — E be a bounded linear operator. Then ( ;:’J*)O = DI .

Proof. (1) Tt follows from Proposition (1) that DI . < (C77)°. Conversely, suppose that
u* ¢ DZ:J*. There is a sequence (uf)?; so that |u*| = o (|uf], ..., |u]) and 7*(3, |T*uf]e;) >
1. Choose z; € E with |z;| < 1 and a real sequence (a;)!; with 7(3" , ase;) < 1 so that
D ey, T*ufy > 1. Set u; = ;Tx;. Using Lemma we have

n
1< ) ugyuf) < Conlluls o unl), ot - Jun])) < ol fun]), [u®]).
i=1
However, 7(3" | |ouzile;) < 7(37 , cue;) < 1. Hence, o,(Jui], ..., |u,|) € C77. This shows that
u* ¢ (CF7)°.
(2) can be proved in the same manner. o

4.3. Convexity and concavity. Let o and 7 be symmetric and normalized lattice norms on cyy, X
a Banach lattice and F a Banach space. As we advanced earlier, the following definition generalizes

Definition 2.1]

Definition 4.11.
(1) A bounded linear operator T : E — X is (1, 0)-convex with constant K if for any sequence
(:Ei)?:l imn E;

low(Tasl, ... [Taal)| < K7 (2 |xi||ei) .
=1

A Banach lattice X is (1, 0)-conver with constant K if the identity operator on X is (1,0)-
convex with constant K.
(2) A bounded linear operator T : X — E s (1, 0)-concave with constant K if for any sequence
(ui);;l mn X;
T O
i—1
A Banach lattice X is (1, 0)-concave with constant K if the identity operator on X is (T,0)-

concave with constant K.

It is a well-known fact (see, for instance, [6, Chapter 16]) that an operator T is (p, ¢)-convex if
and only if its adjoint T™* is (p*, ¢*)-concave, and vice versa. Similarly, Theorem leads to a
duality theory for the convex and concave operators introduced in Definition [4.11]

Theorem 4.12. Let T : E — X be a (1,0)-conver operator with constant K. Then T* is a
(7%, 0*)-concave operator with constant K.

Proof. Let (uf)’_; be a sequence in X* and let € > 0 be given. Choose a sequence (z5)"_; in Bg so
that

K
(Txi,uly = {o;, T*u}) = |T*u}| — 2 for any 1.
n
By definition of 7*, there exists a positive real sequence (a;)!"; so that (3], a;e;) <1 and that

7 <Z \T*uf”ei) < Ma|T*u;| + Ke.

i=1 =1
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Since T is (7, 0)-convex with constant K,

n

lon(ar|Txy|, ... an| Tz, < K7 (Z aia:i|e,~) < Kt (Z aiei> < K.
i=1

i=1

Therefore,
lon (il lun Dl = K™ ow(arTal, . .., anl Twal), on (il )
> K! Zn: ai{Tx;,ul) by Lemma
i=1
> K7 Y (|70 - 22) 5 k0 Y - <
i=1 n i=1
> K ir* <Zn: \T*uf”ez) — 2¢.
i=1
Taking € | 0 give the required inequality for (7%, 0*)-concavity of T* with constant K. O

Theorem 4.13. Let T : X — FE be a (7,0)-concave operator with constant K. Then T* is a
(1%, 0*)-convex operator with constant K.

Proof. Let (z¥)’_, € E*, ¢ > 0 and u € Bx be given. By Proposition [4.7(2), there is a sequence
(u;)y € X such that o, (Jua], ..., |u,|) < |u| and

{ul, o (|T* 2|, ..., |T*z%|)) < Z(ui,T*xD +e= Z<Tui,m;‘> +e
=1 =1

n . n n
<7 (Z |Tui|el-) ™ (Z ||xf||ei) +e< Kr* (Z x;"|ei) +e,
i=1 =1 i=1

where the last inequality follows from the concavity of T', since

n
r(Xmule) < Kool ...l < Klul < £
i=1
Taking ¢ | 0 we conclude that
n
lon(IT*23], .. [T 2| = sup (Jul, op (1T 21, .., [T*2])) < K7 (2 !xfllei) :
’LLEBX i=1
so T* is a (7%, 0*)-convex operator with constant K. o

Combining both results, we get:

Corollary 4.14.
(1) T: E — X is (1,0)-convex with constant K if and only if T* : X* — E* is (7%, 0%)-concave
with constant K.
(2) T: X — E is (1,0)-concave with constant K if and only if T* : E* — X* is (7%, 0*)-convex
with constant K.
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Proof. (1) One implication was established in Theorem For the reverse implication, we can
apply Theorem to obtain that T** is (7, 0)-convex with constant K. If we denote by Jx
and Jg the canonical embeddings into the corresponding bidual spaces, we get that the mapping
IxT =T**Jg : E — Jx(X) € X** is also (7,0)-convex with the same constant. Since Jx is a
lattice isometry, we get the claimed result by composing JxT with Jy'.

(2) Again, one implication was established in Theorem |4.13], and the converse follows by applying
Theorem to T* to obtain that T = J;'JgT = J5 ' T**Jx is (1, 0)-concave with constant K. 0O

We say that a symmetric lattice norm p on ¢y is block convex with constant A, respectively block

concave with constant A, if p(3, vi) < Ap(>,; p(yi)es), respectively p(3, vi) = A~ p(3, plyi)e;), for
any finite disjoint sequence (y;); in coo. It is easy to see that if a symmetric lattice norm p is block
convex with constant A, respectively block concave with constant A, then its dual norm p* is block
concave, respectively block convex with the same constant. Observe that, for every 1 < p < oo, the
norm in ¢, is both block concave and block convex with constant 1, and the same can be said about
the norm in ¢q.

The following proposition shows that, given an operator T': E — X, the Banach lattice generated
by the set (C77)°° with the procedure described in Lemma {4.2|is (7, 0)-convex.

Proposition 4.15. Let T : E — X be a bounded linear operator, and assume that o is block concave
with constant A, and 7 is block convex with constant A,. Let (u;)", be a sequence in (C77)°° and
let (o) be a real sequence so that T(3;_, aue;) < 1. Then o,(|oqusl, . . ., |anu,|) € AgA- - (C77)°.

Proof. Let u* € DI . and let € > 0 be given. By Proposition (1), there exists (uf)i, < X*
such that o (|uf|,..., |u¥]) < |u*| and

n
(Onllavwl, ... lanun]), [u*) < Y el [uf]) +e.
i=1

Let A; = inf{A > 0 : |uf| € ADL’ .}. For each i, there exists (uf;)j2; < X* such that |uf| >
T ([0 ]s - Jui,|) and

() > (- )X, where g = 3 [T%u5 ey,
j=1

Using the fact that o* is block convex with constant A,, we find that

[l = o (fuil, - )
2 0 (0, (] - i, ) - o, (et - i, )
n
= (AU)_l(T:(’uTl‘> T ‘uTmJ’ Tt ‘U:Ll” Tt ’u:mnDa r= Zml
i=1

. * . .
Since u* € DL, , and 7* is block concave with constant A,

TR 09) EREIETTENE

i=1j=1
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= (A,)"'r* (Zn: yi) > (A A) ' (i T*(yi)6i>

=1

> (1-e)(A,A,) (2 )\iei) .

As |u;] € (CF7)°° and |uf| € DL L« = Ni(CF7)° by Theorem [1.10(1), {Ju;], [uf[) < A;. Therefore,

(onllarml, ... lanun]), [u*]) < Z |oviwil, [ui]) + &
< Z Nl +e<T (Z aieZ) T (Z )\¢€i> +¢€

=1 i=1 i—1

A A,

1 —€
Taking € | 0, we see that (o, (Jayuil, ..., |anun]), [u*[> < AgA,. As this holds for all u* € DT o, We
conclude that (A,A;) o, (loqudl, ..., |anu,|) € (DL o+)°. Since the last set coincides with (C77)*
by Theorem [£.10|(1), the proof is complete. |

We will use the previous lemma to construct optimal factorizations for (7, c)-convex and (7, 0)-
concave operators, extending the results of [24, Section 2] for p-convex and p-concave operators. In
particular, applying Theorem with 7 and o being the norms on ¢, and ¢y, respectively, we will
obtain the first statement of Theorem [£.1] If we apply instead Theorem [£.19 with the norms on
and /; acting as 7 and o, we will recover the second part of Theorem [4.1]

4.3.1. Minimal convex factorization. In this subsection, let T': E — X be a (7, 0)-convex operator
with constant K and recall the sets C77 and DZ; . from Definition .

Proposition 4.16. The set (C77)°° is a closed convex solid set in X so that T(Bg) < (C77)°
KBy.

Proof. The set (C77)°° is the closed convex hull of C7, where the polars are taken with respect to
the duality (X, X*). Since C77 is solid, so is (C77)°°. Suppose that v € C;°. There exists (z;),

in E so that |u| < 0,(|T2|,...,|Tz,]) and 7(3", |zie;) < 1. By the convexity of T, |u| < K.
Thus C7° < KBy and hence (C7°)°° < KBx. Finally, if x € Bg, then |Tz| < o(|Tz|) and
7(|x|e1) = |x| < 1. Hence, Tz € C37 < (C77)%°. m

By Proposition [4.3] there is a Class C factorization (Y, Uy, Vo) of T' so that VoBy, = (C77)
The Banach lattice Yy induced by this factorization is (7, o)-convex.

Theorem 4.17. Assume that o is block concave with constant A, and T is block convex with constant
A;. Then, the Banach lattice Yy is (,0)-convex with constant A,A.. The operators Uy, Vi satisfy
|Uoll < 1, |Vo| < K. If (Y,U,V) is a Class C factorization of T' so that Y is (T,0)-convez, then
there is a linear operator ¢ : Yo — Y of Class C so that U = ¢Uy and Vy = V ¢.

Proof. By definition, Yy = span(C77)°° and (C77)°° is the closed ball of Yy (Lemma [4.2)). Since Uy
agrees with 7' formally and Vj is the inclusion map from Y to X, by Proposition [4.16] ||Up] < 1
and |[Vo| < K
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Let (u;)!_, be a sequence in By, = (C;7)°° and let (a;)", be a scalar sequence satisfying
(3, ae;) < 1. By Proposition on(|ausl, ..., |anu,|) € AsA, - By,. Hence Yy is (7,0)-
convex with constant A, A,.

Now, suppose that (Y, U, V) is a Class C factorization of T so that Y is (7, o)-convex with constant

K. Without loss of generality, we can assume that U is contractive. We claim that +(V(By))° =
DYy« Indeed, if u* ¢ DI ., then there exists (u})7_; in X* so that |[u*| = o%(|uf],...,|u}]) and
(X [T*uf|e;) > 1. Choose (z;)!, < Bg and a scalar sequence (o) so that 7(3]" | ae;) <1

and

1< Z ai{x;, T u?) = Z<T(aixi), uf) (Lemma
i=1 i—1

< (on([T(arr)], - T (eman)l), o (futl, - ug )
< (on([T(enzr)], - T (aman)]), [u™])
= Vou([U(arzi)l, .., [Ulanzn)|), [u7]).

However, since Y is (7, 0)-convex with constant K and U was assumed to be contractive,

(U (1), [U(anza) )| < K7 (Z a) < K.
i=1

Thus Vo, (|U(caz1)|, . .., |U(anz,)|) € KV(By). This shows that |u*| ¢ (KV(By))° = %(V(By))°,
completing the proof of the claim.

From the claim, Theorem M(l), and the fact that 1/ is the formal inclusion, we obtain that
VoBy, = Vo((C77)*°) = (C77)” = (DL 5+)°" < K(V(By))™ = KV(By),

T* g%

where the last equality holds since V(By) is closed and convex. The existence of the desired map
¢ : Yo — Y now follows from Proposition [4.3|(2). o

Due to Theorem {4.17, we call (Yg, Uy, Vi) the minimal (7, 0)-convex factorization of T : E — X.

4.3.2. Maximal concave factorization. Similar results for concave operators can be obtained via
duality. Let T : X — E be a (7, 0)-concave operator with constant K.

Proposition 4.18. The set DI is a closed convex solid set in X so that +-Bx = DI < T~'(Bg).
Proof. By Theorem T*: E* - X* is a (7%, 0*)-convex operator. By Proposition 4.16]
T*(Bps) S (Cow™ ) < K Byx.

Easy calculations show that (T*(Bg«))° = T-(Bg) and (K Bx=)° = K 'Bx. Thus, taking polars
in the string of inclusions above gives

K™'Bx < (C5"")° = T~Y(Bp).

By Theorem [4.10(2), ( ;:’U*)O = DI . This concludes the proof of the proposition. o

By Proposition [4.4] there is a Class D factorization (Y°,U° V) of T such that (U°)~}(Byo) =
DI . The next result follows from Theorem by duality. We omit the details.
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Theorem 4.19. Assume that o is block convex with constant A, and T is block concave with constant
A,. Then, the Banach lattice Y° is (1, o )-concave with constant Ay A,. The operators U°, VO satisfy
IU°| < K, |V < 1. If (Y,U,V) is a Class D factorization of T so thatY is (1, 0)-concave, then
there is a linear operator ¢ : Y — Y of Class D so that U° = ¢U and V°¢ = V.

We call (Y°,U° V?) the mazimal (7,0)-concave factorization of T : X — E.

As a consequence, we have the following generalized version of a factorization result given in [25].

Theorem 4.20. Let E, F' be Banach spaces. Let T,0,7', 0" be normalized symmetric norms on cy
such that o and 7" are block concave with constants A, and AL, and 7 and o' are block convex
with constants A, and AL, respectively. Assume that a bounded linear operator T : E — F has a
factorization T = VU, where X is a Banach lattice, U : E — X is (7, 0)-convex with constant K
and V : X — F is (7', 0")-concave with constant K'. Then there are a (T, 0)-convex Banach lattice
Y with constant A, A, and a (7',0")-concave Banach lattice Z with constant AL AL and bounded
linear operators A: E —-Y,B:Y - Z,C:Z — F sothatT = CBA, |A| < K, |C| < K' and
B is a contraction of Class D.

Proof. We may replace X by the closed ideal I generated by U(FE) in X and V by its restriction
V7. In this way, we may assume without loss of generality that the ideal generated by U(E) in X
is dense. Apply Theorem to U and Theorem to V to find the following:
(1) A (7,0)-convex Banach lattice Y with constant A, A, and bounded linear operators A :
E—>Y,R:Y — X sothat R is of Class C and U = RA. Furthermore, |A| < K and
IRl < 1.
(2) A (7',0")-concave Banach lattice Z with constant A A’ and bounded linear operators S :
X - Z,C:Z — F sothat Sisof Class D, V = CS, ||S| < K" and |C| < 1. We may
replace S and C by S/K’" and K'C| respectively. Thus, we may instead assume that |S| < 1
and |C| < K.
Since U = RA, U(E) < R(Y). Also, since R is of Class C, R(Y') is an ideal in X. By the comment
at the beginning of the proof, R(Y) = X. Let B = SR:Y — Z. Then T = CBA, |A| < K,
|C|| < K" and ||B|| < 1. Since both R and S are lattice homomorphisms with dense range, B is a
lattice homomorphism with dense range. Thus, B is of Class D. O

4.4. Duality of factorization. Our next goal is to generalize [24, Theorem 5]. Let us start by
studying the relations between the Banach lattices induced by a closed bounded convex solid set B
and its polar B°, and their corresponding duals.

Proposition 4.21. Let B be a closed bounded convex solid subset of X. Denote the Minkowski
functional of B on X by p and the Minkowski functional of B® on X* by p*. LetY = (span B, p).
Let Q : X* — X*/ker p* be the quotient map, and let Z be the completion of (X*/ker p*, p*), where
pH(Qu*) = p*(u*). ThenY and Z are Banach lattices, and there are unique bounded linear maps
¢ and ¢ determined as follows:

¢ Y = 2%, (QuF,¢(u)) = u*(u),
Vi Z =Y (u,p(Qut)) = ut(u).

Moreover, ¢ and ) are lattice isometric embeddings, the map ¢ is of Class C, and, if X has order
continuous norm, then the map ¢ is of Class C.
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Proof. The fact that (Y, p) is a Banach lattice follows from Lemma It is clear that Z is a
Banach lattice. If u € Y and u* € X*, then |u*(u)| < p(u) - p*(u*) = p(u) - p*(Qu*). It follows that
¢(u) determines a bounded linear functional on (X*/ker p*, p*) and hence ¢(u) € Z*. Similarly, we
have that 1 is a bounded linear map on (X*/ker p*, p*) and hence extends uniquely to a bounded
linear map on Z. Furthermore,

[o(u)|z« = sup  <(Qu*, p(u)) = sup u*(u) = p(u).

P*(Qu¥)<1 p* (u*)<1
Thus, ¢ is an isometric embedding. Similarly, it can be seen that 1 is an isometric embedding. If

ueY, and u* € X*, then

Cu, [ (Qu¥)[) = sup [{v, P(Qu™))| = sup [u*(v)] = [u*|(u) = (u, P(|Qu™])).

[v|<u [v|<u
Hence, [¢(Qu*)| = ¢(|Qu*|). Since Q(X*) is dense in Z, v is a lattice homomorphism. Similarly,
¢ is a lattice homomorphism.

Next, we claim that for any v* € X7, [0, Qu*| = [0, ¥ Qu*]. Indeed, the inclusion < is clear.
Suppose that z* € [0,YQu*]. For any ue Y,

[Cu, 2] < (Jul, 2%) < (Jul, vQu*) = w*(Jul).
By the Hahn-Banach Theorem for positive functionals (cf. [I, Theorem 1.26]), there exists a func-

tional v* on X such that v*|y = 2* and 0 < v*(u) < u*(u) for all uw € X;. Thus, Quv* € [0, Qu*]
and for any ue Y,
(u, pQu*) = v*(u) = u, z7).
Hence, ¥ Qu* = x*. This completes the proof of the claim.
We extend the claim to show that 1 is interval preserving and thus 1 is of Class C. Suppose
that z € Z, and 0 < 2* < ¢z. For each n € N, choose v} € X* so that |z — Qui|lz < L. Set
yi = (% +¥Quf — 2)*. Then 0 < i < ¢Quf and

1
[y = 2™ < [¥Quy — vz = [Quy — 2]z < .

By the claim, y* € [0,¥Qu¥] = [0, Qu¥]. Hence, there exists w* € X* Qu} € [0, Qu¥], so that
y¥ = Qu?. Since (y*) converges to x* and ® is an isometry, (Qw}) converges in Z to some zy € Z.
Clearly, 0 < 2zp < lim Qu} = z and

Vzo = limyYQuw) = limy)} = z*.
This shows that [0,1z] < [0, z]. The reverse inclusion is clear.

Finally, we show that ¢ is interval preserving if X has order continuous norm. Let Jx : X — X**
be the canonical inclusion. Then Jx[—u,u] = [—Jxu, Jxu] for all w € X,. Suppose that u € Y.
Then ¢[0,u] < [0, pu]. Conversely, let z* € Z*, 2* € [0, pu]. Since Q : X* — (X*/ker p*, p*) € Z
is bounded, Q*z* € X**. For any u* € X*,

[u®, Q725 < {|Qu|, ) < (Qu*], puy = Cu, [u™]) = (Ju™], Jxu).
Hence, |Q*z*| < Jxu. Thus Q*z* € [~Jxu, Jxu] = Jx[—u,u]. Let v e X, v € [—u, u] be such that
Jxv = Q*z*. Then v e Y and

(Qu*, pv) = u*(v) = u*, Q72") = (Qu*, z%)



BANACH LATTICES WITH UPPER p-ESTIMATES: RENORMING AND FACTORIZATION 35

for all u* € X*. Therefore, v = z*. This completes the proof that ¢[0,u] = [0, pu]. m|

Now, let T': E — X be a (1, 0)-convex operator, and assume that o is block concave and 7 is
block convex. By Theorem , there is a minimal Class C factorization (Yg, Uy, V) of T so that
Yy = span(C77)°° with norm given by the Minkowski functional of (C7)°°. By Theorem |4.12
T* : X* — E* is (7%, 0%)-concave, o* is block convex and 7* is block concave. By Theorem |4.19]
there is a maximal Class D factorization (Y°,U° V°) of T*. Let p be the Minkowski functional
of DZ: . and let 7 be the norm on X*/ker p induced by DTy Then Y? is the completion of

70* :

X*/ker p,p). From Theorem [4.10(1), we have (C77)° = DI .. As a result, using Proposition
T T* o

4.21], we obtain partial duality of the Banach lattices Yy and Y. Note that below we use the fact
that Y} is a subset of X by construction.

P

Theorem 4.22. Let T : E — X be a (1,0)-convex operator and assume that o is block concave
and 7 is block convez. Let (Yy, Uy, Vi) be the Class C factorization of T induced by the set (C77)*°
and let (Y°,U°,V°) be the Class D factorization of T* induced by the set DL .. Let the maps ¢
and v be determined by

¢: Yo — (V)" (U, ¢(u)) = u(u),

Y0 = (Yo)', (u,p(U'n)) = u*(u).
Then ¢ and v are lattice isometric embeddings. The map 1 is of Class C. If X has order continuous
norm, then the map ¢ is of Class C.

Proof. The proof is essentially immediate. Let us just check that ¢ is an into isometry. Denote the
norm on (Y%)* by p*. Note that U° is the quotient map X* — X*/ker p. Thus,

PH(o(w) = sup (U g(u)) = sup w(u) = sup  u(u) = |uly,

p(UOu*)<1 p(u*)<1 wkeDTE |
where the last equality holds because | - |y, is the Minkowski functional of (C}7)*° (DTT: ox)C. O

A similar result holds for concave operators and their adjoints. Let T : X — E be a (7, 0)-concave
operator, where o is block convex and 7 is block concave. Let 6 be the Minkowski functional of the
set DI and let 6 be the induced norm on X /ker6. Let Z° be the completion of (X/ker6,6). By
Theorem u 9 there is a maximal Class D factorization (Z°, A° BO) of T. Also, there is a minimal
Class C factorization (Zy, Ao, Bo) of T%, where Z, = span( ) , normed by the Minkowski
functional of span(Ch." )*°. As a result of the duality (Cls ) = DI, (Theorem {4.10(2)), we
obtain the following duality theorem. The proof is similar to that of Theorem and is omitted.

Theorem 4.23. Let T : X — E be a (1,0)-concave operator and assume that o is block convex
and T is block concave. Let (Z°,A°, B?) be the Class D factorization of T induced by the set D},

and let (Zy, Ao, By) be the Class C factorization of T* induced by the set (C’T* o%)°°. Let the maps
5 and @Z be determined by

612" — (Zo)*, (u*,dp(Au)) = u*(u),
b Zy — (29, (A%, d(u*)) = u*(u).

Then 5 and 1; are lattice isometric embeddings. The map 1; is of Class C. If X has order continuous
norm, then the map ¢ is of Class C.
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4.5. Factorization of a simultaneously convex and concave operator. Let X and Y be
Banach lattices. In [24], a factorization for an operator 7' : X — Y that is both p-convex and g-
concave was given. In this section, we adapt an argument of [25] to prove an analogous factorization
result that allows us to replace the p-convexity or g-concavity assumptions by (p, o0)-convexity and
(g, 1)-concavity, respectively. We start with the following:

Proposition 4.24. Let Z be a Banach lattice and let Cy, Cy be bounded convex sets in Z. For any
0<6<1,let

(4.1) Cop={veZ: x| <|vl’lvi|*™? for some vy € Cy, vy € C1}.
Then Cy is a bounded convex solid set in Z.
Proof. Suppose that ag, aq, by, by are nonnegative real numbers. Let 0 < a < 1. Then
(1 - a)aga;™ +aby b’ < (1 — a)’ag, a’bg) 1 - (1 — @) ~Pa; ™", a0 7)o,
= ((1 —a)ag + aby)? - (1 — a)ay + aby)' 7,

Now, for v,w € Cy, there are vy, wy € Cy and vy, w; € Cy so that |v| < |vl? [v1[17? and |w| <
lwo|? |wy |*Y. Hence,
(1= a)v+aw| < (1= a)fo] +alw| < (1 —a)vol i~ + afwol” [wn ]
< (1= a)lvo| + afwol)” - (1 = a)fvr] + afwn])' .
Therefore, (1 — a)v + aw € Cyp. It follows that Cp is convex. Clearly, Cy is also solid. By [17,

Proposition 1.d.2], if |[v] < |vp|? Jur|*7%, then |jv] < [vo|? |vi'~?. Thus, the boundedness of Cy
follows from that of Cy and Cj. O

4.5.1. Factoring a (p, p2)-convex and (q, 1)-concave operator. In this subsection, let X, Y be Banach
lattices, 1 < p,q < o0 and py € {p,0}. Suppose that T': X — Y is a bounded linear operator that
is (p, p2)-convex with constant K, and (g, 1)-concave with constant /,. As in Definition , let

1
n E n
Chr? = {v €Y :3(u;)l_; € X such that |v| < (Z !Tui\m) 72 i | < 1} ’
=1 i=1

which corresponds to the set C17 taking the norms o = | - ||,, and 7 = | - |, on cgo, both of them
block convex and block concave with constant 1. By Proposition Co := (CHP*)*° is a closed
convex solid set in Y so that T'(Bx) < Cy < K,By. By Proposition if po is the Minkowski

functional of Cj, then
n s n .
() < (Eoeer)
i=1 i=1

Proposition 4.25. Let Cy = (C}”)*° and Cy = By. For any 0 < 6 < 1, let py be determined
by the equation é = g + (1 —60) and set ps = py if po = p, and p3 = © if py = 0. Define Cy by
and let pg be the Minkowski functional of Cy on Zy := span Cy. Then T'(Bx) < K;_GCQ and
(Zyg, pa) is (pg, D2)-convex with constant 1.

for (u;), < span Cy.
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Proof. First, observe that if K, = 0, then T is the null operator, Zy = {0}, and the result becomes
trivial. Therefore, we can assume that K, > 0. Now, suppose that u € Bx. Then Tu € C < K,C1,

and hence
T Tul\'°
W < |Tu|9 7 € O@.
p

p

Thus, T(BX) - K;_OCQ.

Now, suppose that v; € a;Cp, 1 < i < n. There are vy € C’o,vi e C} so that |v;] < oy|vf|? |vi|*.
First, consider the case where py = p. Note that ;- and = 9) are conjugate indices. Thus, using
Holder’s inequality in the second step below, we have

1

N " (O (e i (10 )
(42) (Zwirﬂ <<Z<af o) (a2 )
=1

=1

< ((Seenr)) (Serea)

(S 2 (Eeter) )5

% n 1-0 n 0
i=1 i=1
For the case p, = 00, we use the inequality

(43) \/ ol < (Vi il ) ( (af%il))l_e

i=1 =1

Po (\/ |Ui|> < o ( p |Uo| )
=1 =1

(S () - B

=1 =1 i=1

Hence,

-9
p9|U1|

to obtain
"y

”"Ivll

In both cases, we may take «; to be arbitrarily close to pg(v;) to complete the proof of the proposition.
O

In Proposition we have exploited the convexity of the operator T' to build a (pg, pz)-convex
normed vector lattice Zy. Next, we exploit the (g, 1)-concavity of T

Proposition 4.26. For 0 < 0 < 1, set gop = 1%5. Let Sy : X — Zy be the operator defined by
Sou = Tu. Then Sy is (go, 1)-concave with constant K.
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Proof. First, note that Sy maps into Zy by Proposition 4.25. Let (u;)~, < X. Write p; for the
original norm on Y. Note that

|Soui| = |Tui| = po(Tu;)’ (Tu)l_e( [T )9< T )19
oUq i Po i) P1 7 po(TUl) p1<TU1) )
which implies that ps(Seu;) < po(Tw;) pl(Tm)1 ~9. Thus

1

(Z pG(SGUi)qG) (Z po(Tw;)" py (T, )“‘0)‘”) 9
=1
1
SUP po(Tu;)’ (Z p1(Tw;) )

Let u = " | |u;|. Since T is (g, 1)-concave with constant K,

1
i=1

Since T'(Bx) < Co, po(Tu;) < |uil| < |u|. Hence,

ull =

1

(ZP@ (Soue)? ) < [ (5 Jul) % = K3 ]ul.

Therefore, Sy is (gg, 1)-concave with constant K (}_9. m|

The previous results yield an analogue of |24, Theorem 15] for operators that are simultaneously
(p, p2)-convex and (g, 1)-concave:

Theorem 4.27. Let X,Y be Banach lattices and let T': X — Y be a bounded linear operator that
is both (p,p2)-convex (py € {p,oo}) and (q,1)-concave. Let 0 < 6 < 1. Determine py,qs by the
equations i = g +(1—0) and g4 = . Set Dy = pg if po = p, and Py = 0 if py = 0. There exists

(1) a (pg, P2)-conver Banach lattzce Zy and a (qg, 1)-concave Banach lattice Wy;
(2) an interval preserving injective lattice homomorphism ® : Z5 — Y and a Class D operator
v:X — Wg,‘
(3) a bounded linear operator Ty : Wy — Z,
so that T = ®Ty V.

Proof. Let (Zy, pg) be as in Proposition and let Sy : X — Zy be defined by Spu = Tu. By
Proposition [4.25] (Zy, pg) is a (py, P2)-convex normed vector lattice. Hence, its norm completion Zy
is a (pg, P2)-convex Banach lattice. Since Cj is a bounded convex solid subset of Y, its Minkowski
functional py dominates the norm of Y. Thus, every py-Cauchy sequence in Zy converges in Y.
Hence Zy may be identified (as a vector lattice) with

{veY :3a pp-Cauchy sequence (v,),_; in Zy so that (v,)._, converges to v in Y}.

In this way, Zy is (identified with) a vector lattice ideal in Y. Hence, the inclusion map ® : Zy — Y
is an interval preserving injective lattice homomorphism. Note that ®Sy = T by the definition of
® and S@.
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By Proposition [4.26] Sy : X — Zy < Z, is (gp, 1)-concave. Hence, by Theorem [4.1|2), there is a
(go, 1)-concave Banach lattice W, a Class D operator ¥ : X — Wy, and a bounded linear operator
Ty : Wy — Z4 so that Sy = Ty V. Therefore, T' = &Sy = ®Ty ¥, as claimed. O

4.5.2. Factoring a (p, 0)-convex and (q, g2)-concave operator. In this subsection, let X, Y be Banach
lattices, 1 < p,q < o0 and ¢ € {q, 1}. Suppose that T': X — Y is a bounded linear operator that
is (p, o0)-convex with constant K, and (g, ¢2)-concave with constant K,. As in Definition let

1
n - n
C%i’qg = {u* € X* :3(vf); € Y* such that |[u*| < (Z \T*vﬂ‘g) ” ,2 AR 1} ,
i—1 i=1
which corresponds to the set C7y taking the norms o = || - [|;# and 7 = | - [+ on cgo, both of them

block convex and block concave with constant 1. Since T is (g, ¢2)-concave with constant K, T

is (¢*, ¢3 )-convex with constant K, by Theorem [4.13| By Proposition 4.16, Cj := (C’%i’q;)oo is a
closed convex solid set in X* so that T* By« < Cy < K;Bx+. Fix 0 <0 <1 and let

Cyp = {u* e X*: |u*| < |ufl?|ui|*? ul € Co,ut € By}

Let Zy = span Cy and let py be the Minkowski functional of Cy. Then (Zy, py) is a normed vector
lattice. By Proposition M, T*By« = K, %Cy and (Zy, py) is (g5, (@)*)-convex with constant 1,
where

1 0 if go =

% qF 1 if gy = 1.
Note that the first condition is equivalent to taking gg = 1. Let D < X be the set (Cy)°, where the
polar is taken with respect to the duality (X, X*).

Proposition 4.28. The set D is a closed convex solid subset of X that contains KP_QBX. Let
be the Minkowski functional of D on X and let Q : X — X /kernw be the quotient map. Define
m oon X/kerm by 7(Qu) = w(u). Then (X/kerm, ) is a normed vector lattice. The map j :
(X/kerm,m) — (Zg, po)* given by (u*, j(Qu)) = {u,u*) is a well-defined lattice isometric embedding.
In particular, (X /kerm, ) is (qg, Gz)-concave.

Proof. Since Cy < KgB x* is a bounded solid subset of X™*, D is a closed convex solid subset of
X that contains K, 9By. In particular, ker 7 is a vector lattice ideal in X and 7 is a well-defined
lattice norm on the vector lattice X /ker 7. If Qu = 0, then u € AD for all A > 0. Thus, [{u,u*)| < A
for any u* € Cy and A > 0. Hence, (u,u*) = 0 for any u* € Cy. It follows that (u,u*) = 0 for any
u* € Zy. This shows that the map 7 is well defined. For any u € X,
[3(Qu)| = sup [u*,j(Qu))l = sup [u,u®)].
po(u*)<1 u*eCy

If 7(Qu) < 1, then w € D and hence |(u,u*)| < 1 for any u* € Cy, since D = (Cy)°. On the other
hand, if 7(Qu) > 1, then u ¢ D = (Cy)°. Hence, there exists u* € Cy such that (u,u*) > 1. Thus,
|7(Qu)| > 1 by the above equation. This completes the proof that j is an isometric embedding.

For any w e X and u* € (Zy) .,

W, [7(Qu)[) = sup ||<%U*,jQU>! = [Cu, w*)| = Jul, u*) = (u, 5Q|ul).

fw* | < w|<fu|
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Thus [jQu| = jQ|ul|. Since @ is a lattice homomorphism, Q|u| = |Qu|. Therefore, |jQu| = j|Qul.
This shows that j is a lattice homomorphism.

Finally, since (Zy, po) is (g, (q2)*)-convex, its dual is (g, g2)-concave by Theorem [4.12] Thus,
(X /ker w, ), which is lattice isometric to a sublattice of (Zg, pg)*, is (qs, G2 )-concave. o

The next step is to show that 7" factors through (X /kerm, 7) as T' = RQ, with R a (pg, 20)-convex
operator.

Proposition 4.29. Define R : (X/kerm,7) — Y by R(Qu) = Tu. Then R is a well-defined
bounded linear operator.

Proof. Suppose that u € D. Then (u,u*) <1 for all u* € Cy. Since T*By« = K, °Cy, [(Tu,v*)| <
K% for all v* € By«. This proves that |Tu| < K} °m(u). In particular, if Qu = 0, then 7(u) = 0
and thus Tu = 0. Therefore, R is well defined. Also, the same inequality shows that

|R(Qu)| = |Tull < Ky™"m(u) = K; "7 (Qu).
Thus, R is bounded. O

Define Sy : Y* — Zy by Sgv* = T*v*. By Proposition 4.26, Sy is (pj, 1)-concave, where pj =

(equivalently, pig = 12'%9 +0).

Proposition 4.30. Define 1 : (Zy, pg) — (X/kerm,7)* by (Qu,yu*) = (u,u*). Then 1) is a
well-defined bounded linear operator so that R* = 1Sy. Consequently, R is (pg,0)-conver.

Proof. Note that [(u,u*)| < 1if w e D and u* € Cy. Hence (u,u*) = 0 if Qu = 0 and u* € Zy. This
shows that Yu* is a well-defined functional on X /kerw. Also, if 7(Qu) < 1, then u € D and hence
Qu, Yu*)| = [{u, u*)| < pp(u*) for any u* € Zy. Hence, vu* € (X/kerm,7)* and |u = || < po(u*).
Therefore, 1 is a bounded linear operator.

For any v* € Y* and any u € X,
(Qu, YSpv™) = (u, Spv*) = (u, T*v*) = (Tu,v*) = (RQu,v*) = (Qu, R*v™).
Thus, R* = ¢Sy. Finally, since Sy is (p;, 1)-concave, so is R*. Hence R is (pg, 00)-convex. m]

Finally, we can state the analogue of [24] Theorem 15] for operators that are simultaneously
(p, 0)-convex and (g, g2)-concave.

Theorem 4.31. Let X,Y be Banach lattices and let T : X — Y be a bounded linear operator that
is both (p,o0)-conver and (q,qz)-concave (g € {q,1}). Let 0 < 6 < 1. Determine py,qy by the
equations qp = § and pig = g +1—0. Setq@g=qyp if g2 =¢q, and Gz = 1 if o = 1. There exists

(1) a (g, G2)-concave Banach lattice Zy and a (py, 20)-convexr Banach lattice Wy,

(2) a Class C operator ® : Wy — Y and a Class D operator ¥ : X — Z,,

(3) a bounded linear operator Ty : Z9 — Yy,
so that T = ®Ty V.

Proof. Let Zy be the completion of (X/kern, 7) and let R : Zy — Y be the continuous extension
to Zy of the bounded linear operator R : (X/kerm, 7) — Y. Also, let ¥ : X — Z, be given by
Yy = Qu. Then ¥ is a Class D operator. By Proposition[4.29] T = RWV. It follows from Proposition
that R is (py, 0)-convex. By Theorem {.1{(1), there is a (pg, o0)-convex Banach lattice Wy, a
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Class C operator ® : Wy — Y and a bounded linear operator Ty : Zy — Wjy so that R = ®T.
Therefore, T' = ®T, ¥, as claimed. |

5. PUSH-OUTS IN CLASSES OF CONVEX BANACH LATTICES

Recall that in a given category, for objects Xy, X1, X5 and morphisms 7; : Xo — X;, i = 1,2,
push-out diagram is an object PO = PO(T},T5) together with morphisms S; : X; — PO, i = 1,
making the following diagram commutative

a
2,

X, 2% PO

A4 s

XO?XQ

and with the universal property that if S! : X; — Y are such that STy = SiT5, then there is a
unique v : PO — Y such that vS; = S} for i = 1,2, as follows:

S5
T1 T Sa

XOTZ>X2

In the category BL of Banach lattices and lattice homomorphisms, isometric push-outs, i.e., push-
outs satisfying the additional conditions that max{[|Si|, [ S|} < 1 and |v| < max{| S|, |55/}, were
shown to exist in [3]. The construction of such isometric push-outs was extended in [§] to certain
classes of Banach lattices C:

Theorem 5.1. Let C be a class of Banach lattices which is closed under the operations of taking
quotients and sublattices of o -sums of spaces in C. Given Banach lattices Xy, X1, Xs in C and
lattice homomorphisms T; : Xy — X; for i = 1,2, there is a Banach lattice PO in C and lattice
homomorphisms Sy, Sy so that the following is an isometric push-out diagram in C:

X, - poc

A s

X() T) X2
Theorem applies, in particular, when C is the class C, of p-convex Banach lattices or the
class C, o of Banach lattices with upper p-estimates (both with constant 1). For these classes, the
problem of extending [3, Theorem 4.4] was also studied in [§]. This result establishes that isometric
push-outs in the category BL preserve isometries. Namely, if in the definition of the push-out
diagram above, T} : Xqg — X; is contractive and T : Xy — X5 is an isometric embedding, it was
shown in [3] that S; : X; — PO is an isometric embedding. For push-outs in the classes C, and C, .,

it was shown in [8, Theorem 4.7] that S is a Kc¢-isomorphic embedding, with K¢ = 27 when C = C,
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1
and K¢ = 2#*, when C = C, .. The proof provided in [§] uses Maurey’s and Pisier’s Factorization
Theorems. It turns out that both constants can be improved by using different techniques.

In the p-convex setting, we can obtain K¢, = 1, that is, a complete extension of [3, Theorem 4.4],
using a p-concavification and p-convexification argument (see, for instance, [I7, Section 1.d]):

Theorem 5.2. Let 1 < p < oo and let C, be the class of p-convex Banach lattices (with constant
1). Let

X, —2% PO%

A s

Xo—— X

T

be an isometric push-out diagram in C,. If T} is contractive and T5 is an isometric embedding, then
Sy is an isometric embedding.

Proof. Since X;, 1 = 0,1,2, are p-convex Banach lattices, we can p-concavify the spaces. Let X,
be their p-concavifications. The maps T; : Xop) — Xjp), ¢ = 1,2, will still be contractive lattice
homomorphisms, since lattice homomorphisms preserve functional calculus, and moreover T, will
still be an isometry:

1Tzl xyy,y = T2zl = 215, =2 12lx00), 2 € Xow)-

Let PO be a push-out in the category of all Banach lattices for this new diagram:

Xy —— PO

f T

Xop) =77 Xop)

Ts

By [3, Theorem 4.4] we know that Ry : Xy, — PO is an isometric embedding. If we p-convexify
this diagram, we find that for every ¢ = 0,1, 2, (Xi(p))(p) = X;, as X, has p-convexity constant 1.
Arguing as before, the lattice homomorphisms R; : X; — PO® 4 = 1,2, are contractive, and Ry
is an isometry. Since POW is p-convex with constant 1, we can apply the minimality property
of PO% to find a lattice homomorphism ~ : PO% — PO® such that R, = vS;, i = 1,2, and
I7 < max{| Ry, | Rof} < 1:

Ry PO
/

X, —2% PO

R2
Ty Sa

XOT)X2

It follows that
lylx, = 1Ryl pow = [vS19llpowm < [S1lpoer < ylx.,
so 51 is an isometry. O
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Unfortunately, this technique cannot be used in the upper p-estimates setting. However, we can
adapt the abstract factorization techniques developed in Section {4] to improve the constant K¢,
obtained in [§].

Theorem 5.3. Let 1 < p < o and let C, o, be the class of Banach lattices with upper p-estimates
(with constant 1). Let

X, —L potre

A s

Xo Xo

T
be an isometric push-out diagram in Cp, . If Ti is contractive and T is an isometric embedding,
1
then Sy is a 27¥ -embedding.

Proof. We begin the proof by considering the isometric push-out diagram in the category BL from
[3, Theorem 4.4], so that R; is an isometric embedding:

X, 2 po

S

Our aim is to construct a (p, o0)-convex Banach lattice Z with constant 1 and a lattice homomor-
phism v : Z — PO with || < 927% —: K, such that for i = 1,2, R, factors through Z as WR;, with
}?ZZ- : X; — Z contractive lattice homomorphisms. Once this is established, it follows that ]%1 must
be an isomorphism, since

lylx, = [Bryllro < [¢[IR1ylz < K| Ruyl 2

for every y € X;. Moreover, by the universal property of the push-out in C,. established in
Theorem [5.1], there exists a contractive lattice homomorphism v : PO%= — Z that makes the
following diagram commute:

Ry
Ty Sa

XOT)Xz

It follows that R
lylx, < Kp|Ruyllz = Kp|vSiylz < Kyl Sty poere
as we wanted to show.
Let us construct the Banach lattice Z. We will take Z = span B, for B < PO a certain closed,

convex and solid set (so that Z endowed with the Minkowski functional is a Banach lattice by
Lemma such that Z is (p, ®0)-convex with constant 1 and R;(Bx,) € B < K,Bpo. The latter
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will imply that R; can be factored through Z as R;, = wéi, with Z/%l : X; — Z given by ]3%3: = Rx
and ¢ : Z — PO the formal identity, so that R; is contractive and || < K,. Using the ideas from
Section [ let us choose B = C°°, where

C = {ue PO :3(v;)1L, < Xy, (w;)}—,,41 S Xo such that |u| < <\/ |R1Uj|> v < \/ |R2wj|>

j=1 j=m+1
m n 1
wd (Rl s Y i) < 1},
j=1 j=m+1

and the polars are taken with respect to (PO, PO*). B is the closed convex hull of the solid set
C, so it is closed, convex and solid. Clearly R;(Bx,) < C' < B. Moreover, C' < K,Bpo. Indeed, if

u € C, there exist (vj)7; € X1 and (w;)}_,,,, S Xz such that

|u|<(\/|ngr) (\/ ) and (Z P+ 3 |wj|p) <1

Jj=m+1 j= Jj=m+1

Therefore, using that the X; satisfy upper p-estimates with constant 1, and hence R; are (p, o0)-
convex with constant 1, we obtain that

Jul < <\/|R1v]\) <\/ \szj|> \/\Rlv]] \/ |Ruw
Jj=m+1 j=m-+1
<(2 ||vj||p) +( v uwnp) <o,
Jj=1 j=m+1

Since Bpo is already closed and convex, it follows that B < K,Bpp. It remains to show that Z
satisfies an upper p-estimate (equivalently, it is (p, o0)-convex) with constant 1. This can be done
by reproducing the results from Sections and for the (p, o0)-convex case, that is, choosing o
to be the cp-norm and 7 the ¢,-norm, and replacing the roles of the sets C77 and DTT:J* by C' and

1

*
D = {u e PO* : (Z\u |p2> * implies that
v/ {l,....n} (ZHR S7 DI Ryu *p) <1},

JjeJ Jj¢J
respectively. More specifically, one needs to show that C° = D following the proofs of Proposi-
tion ( ) and Theorem M( ), and then adapt the argument of Proposition [4.15| to show that
for every sequence (u;)?, € B = C°° and (o), < R such that Y | |oP < 1 it follows that
Vi, loiu;| € B, ie., that the Minkowski functional of B induces a (p, 0)-convex norm with con-
stant 1 over Z. We omit the details. O

1
The contrast between Theorems and makes us wonder whether the constant K, = 2¢* in
the latter result is just an artifact of the proof or, on the contrary, it is a fundamental difference
between p-convexity and upper p-estimates. It should be noted that if K, could be taken to be 1 in
Theorem this would allow us to adapt other categorical constructions from [3], such as Banach
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lattices of universal disposition or separably injective Banach lattices, to the category of Banach
lattices with upper p-estimates.

6. SEARCHING FOR A UNIVERSAL SEPARABLE BANACH LATTICE WITH UPPER p-ESTIMATES

As we have seen in the previous section, certain universal constructions in the category of Banach
lattices can be easily generalized to the p-convex setting via a p-concavification and p-convexification
argument, but this process does not carry over to the class of Banach lattices with upper p-estimates.
Another example concerns injectively universal Banach lattices. Recall that in [16] it has been
shown that C(A, L1[0,1]) (A denotes the Cantor set) is injectively universal for the class of all
separable Banach lattices, that is, every separable Banach lattice embeds lattice isometrically into
C(A, L1]0,1]). Using p-concavification and p-convexification, we can show the following:

Theorem 6.1. C(A, L,[0,1]) is injectively universal for the class of separable p-convexr Banach
lattices (with constant 1). That is, if X is a p-convex Banach lattice with constant 1, then there
ezists a lattice isometric embedding from X into C(A, L,[0,1]).

Proof. The proof is composed of two claims: First, we show that the p-convexification of the Banach
lattice C(A, L1[0,1]) is injectively universal for the class of separable p-convex Banach lattices, and
then we show that this space can be identified with C'(A, L, [0, 1]).

To show the first claim, let X be a p-convex Banach lattice with constant 1, and consider its
p-concavification X, which is also a Banach lattice. By [I6, Theorem 1.1], there exists a lattice
isometric embedding 7" : X,y — C(A, L;1[0,1]). If we p-convexify both spaces, we find that 7" is
again a lattice isometry from X = (X(,))® into C(A, L;[0,1])®). Therefore, C(A, L;[0,1])® is
injectively universal for the class of separable p-convex Banach lattices.

Next, we identify C(A, L1[0,1])® with C(A, L,[0,1]). Let ® : C(A, L,[0,1]) — C(A, L1[0,1])®
be the map that sends any function f € C(A, L,[0,1]) to fP. This map is well defined: Given any
te A, f(t)? € L]0, 1], and clearly f? is continuous as a function from A into L;[0, 1], so f? belongs
to C(A, L1[0,1]), which coincides as a set with C(A, L1[0, 1])®. If we denote by @ and ® the sum
and product by scalars defined in C(A, L;[0,1])® (see [I7, Section 1.d]), it can be easily checked
that ®(f + g) = f ® Pg and P(A\f) = AO Of for any f,g € C(A, L,[0,1]) and A € R, so ¢ is a
linear map from C(A, L,[0,1]) to C(A, L;[0,1])®). Tt is straightforward to check that ® is a lattice
homomorphism. We also observe that

1
H(I)fHC(A,Ll[O,I])<P) = prHé‘(A,Ll[O,l]) = ”fHC(A,Lp[O,l]ﬁ
so @ is a lattice isometry. Finally, we can argue similarly to check that the map that sends every
1
he C(A, L1[0,1])® to h? is the inverse map of ®, so in particular ® is an onto isometry. i

As we discussed earlier, there is no analogue of p-convexification and p-concavification for upper
p-estimates, so the proof given above does not directly adapt to show the existence of an injectively
universal Banach lattice for separable Banach lattices with upper p-estimates (with constant 1). In
analogy with Theorem [6.1], one could expect that if such a Banach lattice existed, it should be of the
form C(A, Z) for some separable Banach lattice with upper p-estimates Z that is somehow canonical
in the setting of upper p-estimates. A reasonable candidate could be the order continuous part of
Lp. Given a measure space (§2, 3, 1), the order continuous part of Ly (p), denoted Ly . (), is
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defined as the closure in L, () of the simple functions. For instance, the prototypical example of
1

a function that belongs to L, [0, 1] but not to L, [0,1] is t~#. The following characterizes when

a function belongs to L, (). We include its proof for the sake of completeness.

Proposition 6.2. Let f € L, (1). Then f e Lj () if and only if
hm ,u J |fldp=0 and  lim p( )_Pl*f |f| dp = 0.
n(A) 1(A)—o0 A

Proof. Let us denote by

Vi 7€ Lot Jim ) [ Aflau=0 and i a5 [ (f1de- o},

It is clear that Y is an ideal in L, . (p). Moreover, it is closed. Indeed, if (f,), € Y is a sequence

that converges to f € Ly (i), then for every € > 0 there is some N € N such that | f — fx|z,., < 5
For this function fn € Y, there are 6 > 0 and M > 0 such that for every measurable set A with

w(A) <0 or u(A) > M, it follows that p(A )_z%* §,1fnldp < 5. Therefore,

A7 [ Ul < ) [ fsldas Q7 [ 17 = Suldi < 510 = Il <

so f €Y. Now, in order to show that Lz,w(u) c Y, it suffices to check that every characteristic
function belongs to Y. Let B be a measurable subset with 0 < pu(B) < o and € > 0. Then, for
every measurable set A with p(A) < e? we have that

1 1

pu(A) #* f xpdu = u(A) 7 u(An B) < pu(A)r <e.
On the other hand, if u(A) > (u(B )/5) it follows that

H(AY | adi = p(A)F (A B) < u(A) F () <
We conclude that yg € Y.

To show the reverse inclusion, let us fix f € Y and € > 0, and find 6 > 0 and M > 0 satisfying

M(A)_Pi* §41fldu < £ for every measurable set A with p(A) < & or u(A) > M. Since f € Ly (1),
p({|f| > n}) decreases to 0 as n grows to infinity (see the definition of the quasinorm || - ||z, ), so
there is n € N such that pu({|f| > n}) < ¢ and hence | fx(sj>n)llz,» < 5. If we also fix m € N such

1

that 47 < 3, we have that for every measurable subset A, either u(A) > M, so that

1 _1 €
A [ gl < w7 [ 1rlde <
A " A 3
or u(A) < M, and hence
(A)r

<

ol ™

_a u
A) ¥ JA X qp<syldp <

In follows that fo{\flé%}”%oo < 3, so that |f — fx{%qf‘gn}Hpr < % Note that g = fX{m<|f1<n}
is bounded and has finite support, so there exists a simple function s supported in supp g such that
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lg — sl < &/u(suppg)? and hence |g — s[z,. < . Therefore, for every e > 0 we have found a

simple function s such that ||f — sz, <e¢,s0 fe L (). O

It turns out that the space L, ,, plays a distinguished role in the class of separable Banach lattices
with upper p-estimates. Indeed, Theorem can be improved so that the (p,o0)-convex operator
T factors through L, when E is separable.

Proposition 6.3. Let E be a separable Banach space, 1 < p < o and T : E — Li(u) a (p,0)-
convez operator with constant C'. There exists a normalized h € Li(p)y such that {h =0} < {Tx =
0} for everyx € E, andT' = MR, where R: E — Lj (h-p) given by Rx = h='Tx is bounded with
IR| < KPL*%C for some 1 < K <2, and M : Ly , (hu) — Li(p) is the multiplication operator by
h.

Proof. By Pisier’s factorization Theorem , there exists a normalized function g € L;(p)4 such
that {g = 0} < {Tx = 0} for every z € E and

T
— < %Cllal.
9 WLy (gm)

Let us take a dense subset (z,)°_; < Sg and assume without loss of generality that Tz, # 0. We

define
fo = _Tza| and h = L Z n Vg
Tz || 2, () K 2n ’

n

where K is chosen so that ||h|z,(,) = 1, so in particular 1 < K < 2. Clearly h is positive and
{h =0} < {g = 0}. Moreover, for every = € E' and measurable subset A we have

71%* 1 71%* a |\ Tx
<f hdu) J |Tz|dp < Kv* <f gdu) J |Tx|dp < K»*
A A A A

9
so the operator Rz = L% is bounded from E to L, (h - p) with |R|| < KﬁvpC. Let us show that
the range of R is contained in L; , (- ). To do so, fix n € N and consider a measurable subset A,

so that
71%* 1 71%*
(f hdu) J |T?L’n| du < (2”}() p¥ <J fn dlu> ”TanLl(u) J fn du
A A A A

< C(2"K)#* U fndu)p < 02K (J hdu>p.
A A

It is clear that lim, ()0 §, hdp = 0, so using Proposition (6.2 we conclude that Rz, € Lg , (h - )
for every n € N. Since R is continuous and (z,), is dense in £, it follows that R(E) < L . (h - ).
Finally, it is straightforward to check that T'= M R. O

1
< Kp* ’YPCH‘WHu
Lyp,o(gr)

In particular, it follows from the above that every positive operator from a separable Banach
lattice with upper p-estimates to L; factors through some L, ,. One could try to apply this
result in order to obtain an (isomorphic) analogue of Theorem for upper p-estimates by using
the following scheme: If X is a Banach lattice satisfying an upper p-estimate with constant 1,
let T: X — C(A, L]0, 1]) be the isometric lattice embedding given by [16, Theorem 1.1], and
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consider for each t € A the point evaluation ¢, : C(A, L1[0,1]) — L;[0,1], which is a lattice
homomorphism. Then, 6,7 : X — L;1[0,1] is a (p, o0)-convex operator, so by Proposition it
factors through L7 (h;) as 6,7 = M;R; for some normalized h; € L1[0, 1], with |R;| < 27%,.
Since ([0,1],m, h - A), where A denotes the Lebesgue measure and m the o-algebra of measurable
sets, is a separable, non-atomic probability measure space, by Carathéodory’s Isomorphism Theorem
([4], see also [12} Section 41]) it must be measure isomorphic to the unit interval with the Lebesgue
measure. In particular, Ly ,(h;) can be identified isometrically with Ly ,[0,1]. Therefore, each of
the maps 6,7 : X — L;[0, 1] can be factored through L; [0, 1] with a uniform bound on the norm
of the factors. If one could show that the above process of choosing the density h; could be carried
out continuously with respect to ¢ € A, then it would produce a lattice isomorphic embedding
R: X — C(A, Ly ,[0,1]) that sends every x € X to the function Rx(t) = Rz, t € A. However,
the way the density is obtained in the original proof of Theorem (see [23]) makes it difficult to
deduce whether such a choice of density preserving continuity can be made.

Another unclear aspect of this approach is whether the candidate for the universal space should
be C(A, L, ,[0,1]) or C(A, L, ,[0,00)). Clearly, if the former satisfies the universal property, the
latter will as well, as Ly [0, 1] embeds lattice isometrically into L; , [0, 00). However, the converse
might not be true. Indeed, L; [0, 1] and L; [0, 0) behave very differently, as the following results
show.

Proposition 6.4. If ji is a separable measure over S0, Ly . (u) embeds lattice isomorphically into
Lo .0, ).
p7w ?

Proof. Let us decompose p into an atomic part 1, and a non-atomic part pin,, so that Lj ,(u) is
lattice isomorphic to L) ,(fta) ® L, o, (#ina). Depending on whether it has a finite or infinite number
of atoms, Ly , (i) is lattice isometric to €7, (w) or Ly . (N,w), where w is a weighted counting
measure over the set {1,...,n} or N, respectively. These spaces are in turn lattice isometric to
the span in Ly ,[0,0) of characteristic functions of disjoint sets Ay of measure wy (K =1,...,n or
k € N, respectively). On the other hand, p,, is measure isomorphic to the Lebesgue measure on
[0,7), where 7 = f1,4(€2). Hence, L, . () is isomorphic to a sublattice of L; , [0, o0). i

Therefore, Ly ,[0,20) contains any other separable Ly , (1) as a sublattice. On the other hand,
L; [0, 1] does not contain £; , nor L; ,[0,0) lattice isomorphically:

Proposition 6.5. The Banach lattice (; ., does not lattice embed into L, [0, 1].

One should compare this result with [I5], where it is established that ¢, ,, embeds as a comple-
mented sublattice of L, ,[0,1], with a positive projection. The proof of Proposition uses the
following lemma (cf. [5]):

Lemma 6.6. Let (fn)n S Ly [0,1] be a positive, disjoint and normalized (with respect to the
quasinorm || - ||z, ) sequence. Then (f,)n has a subsequence equivalent to the co basis.

Proof. Since simple functions are dense in L;’OO[O, 1], after a small perturbation, we can assume that
fn € Ly[0,1] for every n € N. Let r, = A(supp f), where X\ denotes the Lebesgue measure. Then
r, — 0, and passing to a subsequence if necessary, we can assume that there is a positive sequence
(my)n S R increasing to oo such that | f,|r, < m, and >} 7 < m,? for all n € N. Let f
be > f, almost everywhere (note that, since the f,, are pairwise disjoint, this coincides almost
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everywhere with the supremum). To prove the statement, it suffices to show that f € L, [0, 1].
Take any ¢ € R, and choose n so that m,_1 < t < m,, where my = 0. Since |fi|r, < mu,
{fr >t} = & for 1 < k <n. Thus,

0 0
ME>th= Y Mi>th<Mfa>th+ Y me<t?+m," <2t
k=n k=n+1
As t € Ry was arbitrary and f > 0, we conclude that f € L, ,,[0,1], as desired. O

Proof of Proposition[6.8 If such a lattice embedding T': £; , — Ls [0, 1] existed, then (Te,), <
L; ,,[0,1] would contain a subsequence equivalent to the basis of ¢y, where (e,,),, denotes the canon-
ical basis of £ . In particular, (en)n would also contain a subsequence equivalent to the ¢, basis,
which is impossible, since every subsequence of (e,), is equivalent to itself. m]

As a consequence of the above, we get:

Corollary 6.7. (; .., Ly .[0,1] and L; ,[0,0) are pairwise non-isomorphic as Banach lattices.

Proof. Clearly, £, ,, cannot be lattice isomorphic to any of the other two spaces, as it is purely atomic.
L; ,[0,1] and Ly ,[0,0) are not lattice isomorphic, as the latter contains a lattice isometric copy
of £; ,, (the span of the characteristic functions on the intervals [n — 1,n)), whereas the first one
does not by Proposition O

These facts point towards C(A, Ly [0,00)) as a more suitable candidate for a universal Banach
lattice for upper p-estimates. Finally, it should be noted that none of these candidates will be
isometrically universal for Banach lattices with upper p-estimates with constant 1, as both embed
lattice isometrically into an f,-sum of L, ,-spaces, and we have shown in Example that there
are Banach lattices with upper p-estimates that cannot be embedded isometrically into any space
of this form.

Question 6.8. Is there a separable Banach lattice with upper p-estimates (with constant 1) that
is (isomorphically or isometrically) universal for this class? That is, a separable Banach lattice
Y satisfying an upper p-estimate with constant 1 such that for every separable Banach lattice

X satisfying an upper p-estimate with constant 1 there exists a lattice (isometric or isomorphic)
embedding of X into Y'? Do C(A, L; ,,[0,1]) or C(A, L; ,[0,0)) have this isomorphic property?

7. OPERATORS FACTORING THROUGH A (p,p2)-CONVEX AND A (¢, q2)-CONCAVE OPERATOR

In [25], the author studies the ideal of operators that factor through a p-convex and a g-concave
operator, which is denoted M, ,. This ideal is shown to be perfect, that is, it coincides with its double
adjoint, and can be identified with the ideal I, , of operators factoring through a diagonal operator
from L,(p) to Ly(p) defined in [I0]. In this section, we provide analogous results for the ideal of
operators factoring through a (p, ps)-convex and a (g, go)-concave operator, where 1 < p,q < o0,
p < py < 0 and 1 < g < ¢q. Note that in light of [0, Corollary 16.7], up to constants, the only
relevant cases are p, € {p, 0} and ¢, € {1, ¢}.

Throughout this section, we will use the definitions and notation for tensor products and operator
ideals given in [10]. For instance, recall that an operator ideal is a class A of operators between
Banach spaces such that for each pair of Banach spaces E and F' the set A(E,F) = An L(E,F)
satisfies that:
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(1) If 2* € E* and y € F, then 2* ® y € A(E, F), where z* ® y(r) = x*(x)y is a rank one
operator.
(2) A(E,F) is a linear subspace of L(E, F).
(3) If X and Y are Banach spaces, U € L(X,E), T € A(E,F) and V € L(F,Y), then VTU €
AX,Y).
Moreover, a function o : A — R, is an ideal norm if one has:
(4) a(z*®y) = |z*||y| for every z* € E* and y € F.
(4) a(S+T) < a(S)+ «(T) for every S,T € A(E, F).
(4) If X and Y are Banach spaces, U € L(X,E), T € A(E,F) and V € L(F,Y), then a(VTU) <
[V]e(T)[U].
A normed (operator) ideal [A, o] is an ideal A with an ideal norm «, and we say that it is a Banach
ideal if each A(E, F') is a Banach space when endowed with «.

Given a normed ideal [A, «], the adjoint ideal [A, a]* = [A*, o*] is defined as follows (observe
that here = denotes the adjoint of an operator ideal instead of the dual of a Banach space): For each
pair of Banach spaces E and F, A*(FE, F) is the set of all T'e L(E, F') such that there exists p > 0
satisfying that for all finite-dimensional Banach spaces X,Y and all U € A(Y, X), V € L(X, E) and
WeL(FY),

| tr WTVU| < p|W[V]e(U),
where tr denotes the trace of an operator defined from a finite-dimensional Banach space to itself.
The norm o*(T) is given by the infimum of all p satisfying the above. o* is always a complete ideal
norm. An operator ideal [A, o] is perfect if [A, o] = [A, «]**. This notion is equivalent to the ideal
being finitely generated, mazimal or being the adjoint of some other ideal (cf. [26, Theorem 8.11]).

Regarding tensor products, recall that if £ and F' are Banach spaces, a norm n on £ ® F' is a
reasonable crossnorm if it satisfies the following properties:

(1) n(z®y) < |z||y| for every x € E and y € F.

(2) For every x* € E* and y* € F*, the linear functional 2* ® y* on £ ® F that takes values
Ry (r®y) = *(z)y*(y) on the elementary products t ® y € E ® F is bounded, and
lz* @yl < |=*[ly]

A uniform crossnorm is an assignment to each pair of Banach spaces of a reasonable crossnorm on
their tensor product in such a way that whenever E, F, G and H are Banach spaces and S: £ — G
and T : F — H are operators, then the operator SR T : FQ FF — G ® H is bounded and
ISQT| < |S||T|. It is easy to check that every uniform crossnorm induces an ideal norm over the
operator ideal F of all finite rank operators via the identification F(E, F)) = E* ® F' described in
property (1) in the definition of an operator ideal. We will denote this normed ideal by [F,n]. A
uniform crossnorm 7 is finitely generated (see [26, p. 129], this is also referred to as a ®-norm in
[25]), if for all ue E®Q F,
n(u) = inf n(u; M, N),

where the infimum is taken over all finite-dimensional subspaces M < E and N < F such that
ue M ® N, and n(u; M, N) denotes the p-norm of u as an element of M ® N.

Let us fix 1 < p,g < 0, p < po < 0 and 1 < ¢ < ¢q. We introduce the following definition,
which generalizes the ideal [M, 4, 11, 4] of operators that factor through a p-convex and a g-concave
operator introduced in [25], Section 2]:
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Definition 7.1. Let E and F be Banach spaces. An operator T : E — F belongs to the class
Mp poig.a) (B, F) if there exists a Banach lattice X, a (p,p2)-convex operator U : E — X and a
(q, q2)-concave operator V : X — F** such that JpT = VU, where Jp : F — F** denotes the

canonical embedding:
Jof iy L
N
X

We define pippyq.q)(T) = inf {KPP)(U)K(y4,)(V)}, where the infimum is taken over all possible
factorizations above.

As is customary, when py = p we will simply write p instead of (p, ps), and similarly when ¢ = ¢.
Our first goal is to show that M, ,.,.q.4) is a perfect ideal. This will be done by showing that it is
the adjoint of [F, 1y piq.)] s Where 1, 1,.4.40) is @ uniform crossnorm defined as follows:

Definition 7.2. Given ue E® F, we define

Mppaig.) () = inf {e(pﬁpz;q,qz)qgci Quitiz1) + (@)iey € B, (i)imy = Fiu = sz ®Z/i} ;

i=1

where

1
Op,p2ia.a0) ({Ti @ Yiti—y) = sup { Z <2 | (@ |p2> (2 ly; (yi |q2) :

[@R)iii e < L1752l < 1}

and q* and ¢ denote the conjugate exponents of q and qo, Tespectively (when py = 0 or qu = 1, the
corresponding ps or qi-sum must be understood as a supremum,).

Following the steps of [25], the first thing to show is that:
Proposition 7.3. 1, ,:4..) @5 finitely generated.

Proof. Tt suffices to check that whenever we fix a representation u = Y\ | ; ® y; with (z;)!; € M
and (y;)"_, € N for some finite-dimensional subspaces M < E and N < F, then

e(p,pz;q,qz ({7 ® yi}i- - b, F)= 9( ,pz;q,tp)({xi@yz i M, N).

Clearly, 0y pyig.0) ({2 @i}y B, F) < O poig,0) ({2 @uitizy; M, N), since every pair of sequences
(zk)il1 € Buy(m+) and (yj)72; € By, (rx) can be restricted to M and N, respectively, to induce
sequences in By y+) and ng*(N*), and the values of the sums considered in the computation of
O (p,p2iq,q2) T€MaIN unchanged.

On the other hand, the inequality 0(p.py:q.4)({7i @ Yitiii; B, F) 2 0ppyiq.ae) ({71 @ witiiy; M, N)
is a consequence of the Hahn-Banach Theorem: Every pair of sequences (vj);, € By (u+) and

(wi)fL, € By, (v+) can be extended to sequences in By, p+) and By ,(r+) without altering their

values on (x;)"; and (y;)’ ;. o
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The next proposition shows the connection between the 7, p,.q.4.)-n0rm and (p, p2)-convex and
(q, g2)-concave operators.

Proposition 7.4. For everyue E*® F = F(E,F) < L(E, F),

N(p,p2;a.92) (u) = inf {K(p,m) (R)K(q,qz) (S)},

where the infimum is taken over all possible factorizations w = SR with Z a finite-dimensional
Banach space with a 1-unconditional basis (endowed with the order induced by the basis), R : E — Z
and S : Z — F.

Proof. The proof is just an adaptation of [25, Proposition 1.3] with the corresponding changes in
the exponents. We include it for the sake of completeness.

Let u € E* ® F and assume that it factors as u = RS with Z a finite-dimensional Banach space
with a l-unconditional basis, R : E — Z and S : Z — F. Let (e;,ef)", be the corresponding
basis of Z and its biorthogonal functionals. We define z} = R*e] and y; = Se;, so that u = SR =
> xf ®y;. By definition,

<Z|$ T, |p2) 12@
(Z!y] Yi !q2>

Therefore, given ¢ > 0, we can choose (7)72, € €,(E) and (y;)7L; € g+ (F*) that e-almost attain
the supremum in the definition of 0, ,:q.0.) ({27 @ ¥i}i=1), so that

1 1
n oe} p— 0 g
‘9(17,102;%72)(‘{95’2k ® Yitiz1) Z (Z xy(x; |p2) (Z (s ‘42) +e

K(pm)(R) = sup {

N lee < 1},

K(g)(8) = K7%)(5%) = SUP{ ) lee ) < 1}.

(g’
1 k

< K0P )(R)K(qcm)(s) +e.
Hence, n(p,pmm)(u) < iIlf{K(p’p?‘)(R>K(q7q2)(S)}.

%Zn: (Zly] Yi Iq2)

=1

L

w%‘»—‘

>

For the reverse inequality, let € > 0 and suppose that u = ) | 2 ® y; is a representation such
that

e(p,pz;qm)({x;k ®Yifiz) < U(p,pz;q,qa)(u) + €.
Let Z be R™ endowed with the norm

1
n . % q7*
2l) = sup {2 (2 v <yi>rqz) 2 ’ N lepe i < 1}
i=1 k

for z = (z;), € R". Note that the unit vector basis (e;)!; of R is 1-unconditional for this norm,
as ||z|| is only determined by (|z]). Let us define R: E — Zby R=>" 2f®e¢;and S: Z — F
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by Sz =", zy;. It follows that u = SR,

K®r)(R) = sup{ Z (Z |a:j‘(:)sk)|p2) &l @)z e,y < 1}
1\

1=

= e(p,pz;q,qz)({x;k ®Yifizy) < n(p,pz;q,qa)(u) +é,

and
n =
* £ q.
K(gq)(8) = K8 (5%) = SHP{ > <Z |y§‘(y¢)|q2> e i e ) < 1}
i=1 \'k
n =
%\ ¢
= sup {Z % <Z Iy}"(yi)|q2> B 1S N [ o] FARGEES 1}
i=1 k
= sup{||z]| : [lz]] < 1} = 1.
Therefore, inf{ K2 (R)K ;.4,)(S)} < Nppigas) (1) o

Next, we show that the ideal M, ,.q4,) defined in Definition is perfect.
Proposition 7.5. The following properties hold:

(1) [M(ppoig.a)s H(ppoiaigs)| @5 @ perfect normed ideal of operators.
(2) IMp.pria.ae) Fp.priag)] = [F ppoiq.an) I

Proving Proposition requires some previous lemmata. Namely, we need [25] Lemma 2], which
is also valid for the case p = o0 even though it was originally stated for 1 < p < o0, and an analogue
of [25, Lemma 3]:

Lemma 7.6. Let G be a finite-dimensional subspace of a Dedekind complete Banach lattice Y .
Given 6 > 0 there are pairwise disjoint (y;)?_, < Y; and an operator W : G — span(y;)i, such
that |z — Wex| < d|z| for every x € G, and moreover we have that

H (i W) i (i |ij\p) < (i ij\p) '
j=1 j=1 j=1

for all (z;)7, < G and 1 < p < 0.

Lemma 7.7. Assume that E or F are finite-dimensional and T € L(E, F) is such that JpT = VU
with X a Banach lattice, U : E — X a (p, pa)-convex operator and V : X — F** a (q, q2)-concave
operator. Then, for every e > 0 there exists a finite-dimensional Z with a 1-unconditional basis and

a factorization
a F
N
Z

with KPP (R)K (4.45)(S) < (14 ) KPP (U)K (g,0,) (V).

E
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Proof. Let us first assume that E is finite-dimensional. By Theorem [{.19] V : X — F** factors
through a (g, ¢2)-concave Banach lattice Y with constant 1 as V' = 14V}, where V} : X — Y is
a lattice homomorphism with ||V < K44,)(V) and V2 : Y — F** is contractive. Without loss
of generality, we can assume that Y is Dedekind complete. Otherwise, we replace Y by Y** V)
by JyVi and V5 by Jpe V5. Let us fix € > 0, and consider § > 0 to be chosen later. We can
apply Lemma to the finite-dimensional subspace G = ViU(E) € Y to find a finite-dimensional
sublattice Z € Y and an isomorphism W : G — Z such that for all (z;)72, < G,

\ (2 |xjrp2) " (2 rw:cjw?) "l <s (2 \) |

j=1 j=1 j=1
Observe that V41U is (p, p2)-convex with constant K®?2) (U)K, ,,)(V), as Vi is a lattice homomor-
phism, and Z is also (g, g2)-concave with constant 1. It follows that for all (u;)7, € E

‘(ZIW%UWI’”) (Z\%Uuﬂ”) + (Z|V1qu|”) —(2|W%qu|p2) H
= i=1

j=1 J=1
1
< KUKy (V) (Z \ujrp) ‘s (2 vlvujm)

j=1 J=1
m 1 m P
P P2
< K0 (U)K (g g (V) (Z |uj|P) + 8|V <Z Iujllm)
j=1 =1

< K(nm)(U)K(q’qQ)(V)(l + 6) (Z |Ujp) )

j=1

where, in the last step, we have used the fact that p, > p. Therefore, R = WWV U : E — Z is
(p, p2)-convex with K®r2)(R) < K®P2)(U)K (4, (V)(1 + 6).

To construct S, observe that W satisfies that (1 — §)|z| < [Wz| < (1 + d)|z| for every z € G.
Denote by k = dim GG, which is independent of ¢ and d, and n = dim Z > k, and let (e]) be a
normalized basis of G. Then (We;)"_, is a seminormalized basis of W(G) < Z. Let (2})i_, < Z*
be the Hahn-Banach extenswns to Z of a set of seminormalized functionals which are blorthogonal
to (We;)¥_,, so that ||z¥| < %5 for every j = 1,... k. If we write K = ﬂk ker z¥, then Z =

W(G)@® K. Then, every z € Z can be represented as z = 3% ¢;We,; +y with y € K and ¢; = 2*(2)

j=1 J
for every j. Let us define M : Z = W(G) ® K — Y that sends every z = Z] ciWe; +y to
Mz = Z§:1 cje; + v, so that

k

) Zc]e]

Mz - z] =

k
2 Z CjW€j <

oo

. (5k
52 1712 < 37— 1=l
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It follows that M is an isomorphism onto its image such that |[M| < 1+ % and MWz = z for
every x € G. Let us now compose M with V5 to obtain a finite-dimensional subspace of F™**, to
which we can apply the Local Reflexivity Principle (cf. [7, Theorem 6.3 and Exercise 1.76]) to get
an isomorphism onto its image Q : VoM(Z) — F such that Q = Jz' on VoM(Z) n Jp(F) and
|Q| < H2. Tt follows that the operator S = QVoM : Z — F satisfies

SRu = QVoMWViUu = QVoViUu = QVUu = QJpTu = Tu

for every u € E/, and moreover it is (g, g2 )-concave, since Z was already (q, g2)-concave, with constant

1+96 ok
K (9) = IS1 < |QUVaIIM] < 1= (1+ 7=5) -

Taking § small enough, we can achieve K(p’pQ)(R)K(qqu)(S) < (14 ) KPP (U)K (44 (V), as we
wanted to show.

Now, if we assume that F' is finite-dimensional, then F' = F** so we can write T' = VU. Then,
it suffices to apply the first part of the proof to the factorization

\ 4”

and take adjoints in the new factorization to obtain the desired result. O
Now, we are ready to prove Proposition |7.5}
Proof of Proposition[7.5 The first statement follows from the second one by [26, Theorem 8.11].

Let us first show that [My, poiq.g0)s lippeiaae)] S [Fs Nppeige]™™- Let E and F' be Banach spaces
and T' € My pyiq.40)(E, F). Assume that JpT factors as in Definition By Lemma , for every
finite-dimensional G € F and H < F* (denote by i : G — F and j : H — F* the embeddings) the
operator 7*JpT1 admits a factorization

J*JIpTi

G a*

oA

Z

with Z finite-dimensional with a l-unconditional basis, such that K®*2)(R)K,,\(S) < (1 +
5)K(p’p2)(U)K(q,q2)(V). Since G and H* are finite-dimensional, using [22, Proposition 9.2.2] and
Proposition [7.4] we get

asana) 0 TETE) = N i) (7 TrTE) < KPP (R)K (4,0)(S) < (1 4 &) KPP (U) K g0 (V).

N(p,p2;0,92)

Observe that [F, 0 paiq.q0)]** is already a perfect ideal, as it is the adjoint of [F, 7 pyig.q0)]*- There-
fore, by [26, Theorem 8.11], it is a finitely generated ideal, so

Nippasag) (L) = SUPNG 000 (7 JFTE) - G < E, H < F* finite-dimensional
< (1+ 5>K(pp2)(U)K(q,q2)(v)'
It now follows that 7y, . qQ)(T) < H(ppaiga) (T):
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In order to show that [My pyiq.00)s ippoiags)] 2 [F> Nppaigas) )™ we will make use of a standard
ultraproduct argument, so we will omit some of the details. We refer to [13] for basic terminol-
ogy and notation on ultraproducts. Again, let us fix Banach spaces £ and F' and an operator in
[F(E; F), Nppaigq)) - First of all, we make use of the fact that every Banach space embeds isomet-
rically into the ultraproduct of a collection of its finite-dimensional subspaces (see [I3, Proposition
6.2]). In particular, there exist index sets K and L, ultrafilters Up and Upx over K and L (re-
spectively), collections {Gi}rex S {G : G < FE finite-dimensional} and {H;},c, < {H : H <
F* finite-dimensional} and isometric embeddings ig : £ — (Gp)u, and jpx @ F* — (H)y,,. It
follows that

U, ={C < K x L:3A € Ug, Be Upx such that A x B < C'}

defines a filter on K x L, so by [I3] Proposition 1.1] there exists an ultrafilter U that dominates .
If we put Gy, = G, for every | € L and Hy; = H, for every k € K, there exist canonical isometric
embeddings 0 (Gr)uy — (Gry)u and ; D (Hiu,s — (Hiy)u. Finally, note that by [I3 Section 7]
there exists a canonical isometric embedding ¢ : (H}))u — (Hpu)y-

Now, let us fix € > 0 and consider for each pair (k,l) € K x L the finite-dimensional subspaces
Gy < Eand Hy; < F* (this time we denote by iy, : Gy; — E and ji; : Hy; — F* the embeddings).
By [22, Proposition 9.2.2], Ty; = ji;JrTikg € [F(Gri, Hi ) N pzsaa) ™ = [F(Gras HE ) Mppaaa) |
so we can use Proposition to find a finite-dimensional Z;; with a l-unconditional basis and
operators Ry : Gy — Zy, and Sy, : Zy; — Hy, such that T} factors as Sy Ry, and

KPP (Ry 1) K (4,45) (k1) < (14 &)0ppasgaan) Ui T Ting) < (1+ )y (T)

(p.p2;9,92)

(the last inequality holds because [F,7(ppyiq.q0)]™* is a finitely generated ideal, see [26, Theorem
8.11]). By rescaling the norm of Z;; we can assume without loss of generality that /(4 q,)(Sk;) = 1.
It follows from [13, Proposition 3.2] that X = (Z;;)y is a Banach lattice, and it is easy to check
that R = (Rk,l>ll : (Gk,l)u — X is (p,pg)—convex with K(p,pz)(R) < Suka K(p7p2)(Rk7l> < (1 +
o) (L) and S = (Sgp)u + X — (Hj)u is (¢, g2)-concave with Ky 4,)(S) < supy; K(g,40)(Skit) =
1. Therefore, we have obtained the following commutative diagram:

y s
(Tk,1)u J* Jp*

£ ¥ ES ES ko
(Hgu — (Hpp) g —— (H)y , — F

-

E—% (Gr)uy — (Gra)u
D
X

A careful computation shows that jf;*}*gp(Tk,l)u%E = JpT, so for every ¢ > 0 we have found a

factorization of JrT' through a Banach lattice X with operators U = Riip and V = j}*‘?*goS such
that

N(nm;qm)(T) < K(p’pQ)(R)K(%%)(S) < (L+e)ng, )(T)-

(p.p2;4,92
O

We devote the last part of the section to identifying the ideal M, p,.q,,)- First, observe that
Theorem allows us to redefine the ideal M, ,,.q4,) in an alternative way:
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Proposition 7.8. Let T : E — F. Then T € My, p,.q.00)(E, F) if and only if JpT factors as

E-L.p T e

)| I

X Y

where X is a (p, p2)-convex Banach lattice, Y is a (q, g2)-concave Banach lattice, both with constant
1, U and V are bounded operators and Q) is an (almost interval preserving) lattice homomorphism.
Moreover, ji(ppyiq.q)(T) = inf |[U||Q[[| V]|, where the infimum is computed over all possible factor-
1zations.

From now on, we consider only ps € {p, 0} and ¢ € {1, ¢}, as they are the most relevant cases.
The following definition is an analogue in our setting of the ideal I, , of operators factoring through
a diagonal D : L,(pu) — L,(p) introduced in [10].

Definition 7.9. An operator T : E — F belongs to I(pp,.q.q.)(E, F) (i.e. factors through a mul-
tiplication operator from Ly, (g1 - ) t0 Lgg, (g2 - 1)) if there exists a positive measure p, func-
tions g1,92 € Li(p) and operators A : E — Ly, (g1 - 1), D Lpp,(g1 - 1) — Lgg(92 - ) and
B Ly, (92 1) = F** such that JpT = BDA and D is a multiplication operator, that is, Df = gf

for some measurable function g:

Jr

E—T .F Fr
| L
Lp,m (91 ' :u) D Lq,q2 <g2 : M)

We define i pyiq.q0) (1) = inf {|A||D[|B|}, where the infimum is taken over all possible factoriza-
tions above.

Theorem 7.10. Assume p > q. Then [Mppyiq.0) Bppriaa)] 008 [Lppoig.an)s ippaiq.an) ] are isomor-
phic ideals.

Proof. [Mpyq.a0)s Fpweiaa)) 2 Lppsiaa): lppeia)]: Assume that JpT factors as in Definition [7.9]
Since Ly, (92- 1) is (¢, g2)-concave with constant 1, it follows that B is (g, ¢2)-concave with constant
|B|. On the other hand, observe that L, (g2 - i) is Dedekind complete, so the operator D has a
modulus |D|, which is given by |D|f = |g|f for every f € L, ,,(g1 - ). Moreover, |||D|| = ||D| and
|D| is a lattice homomorphism. Therefore,

1 1
n E n E
\(ijzvn) =H(Z|ID|J2|”2)
i—1 . i=1
n L n =
P2 P2
< IIIDIHH(Z Ifilm) < D] (Z ||fi§fp2)
i=1 D i=1

and D is (p,ps)-convex with constant |D||. It follows that DA is (p,p2)-convex with constant
[AIDI, s0 T'€ Mippsiq0) (B F) and pigp pyiq.00)(T) < [A[|D]|1B].

4,92

P
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(M poiq.a0)s Bppaiaan)] S [Lppaiaan)s ippeiags)]: We start by considering a factorization JpT = VQU
as in Proposition and fixing ¢ < r < p. The case ps = p, g2 = q was established in [25]. Here,

we show the other three cases, which are summarized in the commutative diagrams below:

(1) Case 1: py = ©, g2 = ¢. X is (p,o)-convex, so it is r-convex with constant C,, [17,
Theorem 1.£.7]. Let X be a lattice renorming of X so that the r-convexity constant is 1
[17, Proposition 1.d.8]. By rescaling, we can assume that @ X - Y, the composition
of () with the renorming isomorphism, is a contractive lattice homomorphism. Moreover,
Y is already r-concave with constant 1, so by Krivine’s Factorization Theorem (cf. [14]
Théoréme 2] or [24, Lemma 17]), Q can be factored through some L, (1) with contractive
lattice homomorphisms R : X — L,(;1) and S : L,(1) — Y. Note that S is g-concave, so,
by Theorem , it factors through L,(go - j1) for some change of density 0 < g2 € Sp, (),
with contractive factors Sy : L,(u) — Ly(g2 - p) and Sy @ Ly(go - ) — Y, where S; is

1

the operator of multiplication by g, ”. Similarly, by Theorem , there exists a change of
density 0 < g, € S,y such that the composition of the renorming of X with R (which is

(p, o0)-convex) factors through LIL (g - p) with Ry : X — LU) (g1 - 1) of norm bounded by

(1-— g)%%Cp’rHQH and Ry : LV (g1 - p) — L,.(1) the contractive operator of multiplication

1
by g7. Composing the renorming isomorphism from Lz[glylo(gl - ) into L,[;]oo(gl - ) given by

(2.5) with the multiplication operators Ry and 57, we obtain the operator D : Lz[jlo(gl ) —

1 1

L,(g2 - ) of multiplication by (%) e L.(g2 - pt)+, which has norm bounded by <L>;.

p—r
Putting everything together, we conclude that T" € I, 4. (£, F') and, since the factorization
through @ and the exponent r € (q,p) were arbitrary, we can take the infimum over all
possibilities to get that

q<r<p

24
. . p "
i(pooi)(T') < inf { ( ) Cpﬂ"} f(p,ooig) (T)-

JF

E F e
Q

| h

X X “ Y

=
—~ <
%
/
\

NE

(2) Case 2: py = p, g2 = 1. The procedure is similar, but this time, we need to renorm Y with
distortion Cyx ,+ so that it becomes r-concave with constant 1, and after factoring through
L, (p) with Krivine’s Theorem, we need to apply Theorem [2.3|and Theorem and renorm
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1
q7

ng ](92 - 1) to recover the standard norm of L 1(92 - p1). Finally, we get that

N
. . q "
ipig ) (T) < qg,lgp { < ) C‘I*ﬂ"*} fipiq.) (T)-

q*—r*

Jr

E

X Y Y

i

Ly(g110)

(3) Case 3: py = 0, go = 1. This time, both X and Y need to be renormed, introducing

distortions C),, and Cp .+, respectively, and, after applying Theorems and [2.6, we need

to renorm the corresponding Lg:]oc (g1-p) and L([;j ] (g2 - ) to obtain a multiplication operator

D from L;E,(])o(gl -p) into rt (g2 - ). This time, the relation between the ideal norms is given

q,1
by
p \7 R
i(poesg.)(T) < qg}gp { (p - 7’> (q* — r*) CprCo s } Hip,eoig1) (T)-
E T F il e
Q
U TV
X X Q % Y
~ Ry R S ~
Rll \ \ / { 52
r R S ¥
Lk (gip) = Like(gupt) = Ly (1) —> L'y (ga2) == LI (gap1)
D
O
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