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ABSTRACT. We provide a complete local well-posedness theory in H*® based Sobolev spaces for the free
boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-
posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness,
and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced
uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the Cl’%
regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures,
in a suitable sense, the distance between two solutions (even when defined on different domains) and we
show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale
invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v)
Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant
pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the
velocity is in LlTI/Vl’oo and the free surface is in L%C’l’% , which is at the same level as the Beale-Kato-Majda
criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions.

Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid

domains.
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1. INTRODUCTION

In this article, we study the dynamics of an inviscid fluid droplet in the absence of surface tension. At time

t, our fluid occupies a compact, connected, but not necessarily simply connected region Q; C R, and its
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motion is governed by the incompressible Euler equations

0w ~+v-Vu=-Vp—geq,
V-v=0.

(1.1)

Here, v is the fluid velocity, p is the pressure, g > 0 is the gravitational constant, and ey is the standard
vertical basis vector. In the local theory of the droplet problem, the gravity can be freely neglected. However,
it becomes important in the case of an unbounded fluid domain and in the case of a domain with a rigid
bottom, so we retain it in for completeness.

An essential role in the analysis of the droplet problem is played by the vector field
Dt = (9t +v- V,

which is called the material derivative and describes the particle trajectories. On the free boundary, we

require the kinematic boundary condition

(1.2) D, is tangent to U{t} x 90, C R
¢

which says that the domain €, is transported along the material derivative (or equivalently, the particle
trajectories), and that the normal velocity of I'; := 0 is given by v - np,. Additionally, we require the

dynamic boundary condition

(1.3) p|pt :0,

which represents the balance of forces at the fluid interface in the absence of surface tension. Using the

above boundary conditions, it is easy to see that the energy

[v]?
E = — tgr-eq | dx
o, \ 2

is formally conserved. Throughout the article, we will refer to the system (1.1)-(1.3) as the free boundary

(incompressible) Euler equations.

As is the case with all Euler flows, an important role in the above evolution is played by the vorticity, w,
defined by

wij = 0;u; — O5v;.
By taking the curl of 7 the vorticity is easily seen to solve the following transport equation along the
flow:

(1.4) Dyw = —(Vv)'w — wVo.

If initially w = 0, then (1.4]) guarantees that this condition is propagated dynamically. Such velocity fields
are called irrotational, and the corresponding solutions to the free boundary incompressible Euler equations

are called water waves.

By taking the divergence of (|1.1)), we obtain the following Laplace equation for the pressure:

Ap = —tr(Vv)? in Q,
p=0 on I}

(1.5)
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For regular enough v on sufficiently regular Q;, the equation (|1.5)) uniquely determines the pressure from the
velocity and domain. A key role in the study of the free boundary Euler equations is played by the Taylor
coefficient, a, which is defined on the boundary I'; by

(1.6) a:=—-Vp-nr,.

Indeed, a classical result of Ebin [21] asserts that the free boundary Euler equations are ill-posed unless
a > 0. For this reason, we will always assume that the initial data for the free boundary Euler equations

verifies the following:
Taylor sign condition. There is a ¢y > 0 such that ag := —Vpg - nr, > co on I'y.

For irrotational data on compact simply connected domains, the Taylor sign condition is automatic by the
strong maximum principle [33]. See also [26] 49] for similar results on unbounded domains when g > 0.
Geometrically, enforcing ag > 0 ensures that the initial pressure pg is a non-degenerate defining function for
the initial boundary hypersurface I'g, and thus can be used to describe the regularity of the boundary. As
part of our well-posedness theorem below, we prove that the Taylor sign condition is propagated by the flow

on some non-trivial time interval.

Another important role in this paper is played by the material derivative of the Taylor coefficient, D;a,
which turns out to be closely related to (a derivative of) the normal component of the velocity v - np,. We
will elaborate further on this relation shortly when we discuss our choice of control parameters and good

variables.

1.1. The Cauchy problem: scaling, Sobolev spaces and control parameters. A state for the free
boundary Euler equations consists of a domain 2 and a velocity field v on 2. A bounded connected domain

Q can be equally described by its boundary I'. Hence, in the sequel, by a state we mean a pair (v,T).

Describing the time evolution of (v,I") along the free boundary incompressible Euler flow is most naturally
done in a functional setting described via appropriate Sobolev norms. To understand the proper setting,
it is very helpful to consider the scaling properties of our problem. The boundaryless incompressible Euler
flow admits a two parameter scaling group. However, when considering the free boundary flow there is an
additional constraint; namely, that the pointwise property a & 1 rests unchanged. At a technical level, this
is reflected in the fact that the Taylor coefficient appears as a weight in the Sobolev norms which are used

on I'. Imposing this constraint leaves us with a one parameter family of scaling laws, which have the form
oa(t,z) = A2y (/\%t, /\x) ,

pat,x) = A"1p (A%t, /\z) ,

)y ={\tz:zely ).

As noted earlier, the above transformations have the property that the Taylor coefficient has the dimensionless
scaling,

ax(t,xz) =a (A%t,)\m) .
A first benefit we derive from the scaling law is to understand what are the matched Sobolev regularities for

v and I'. This leads us to the following definition.
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Definition 1.1 (State space). The state space H® is the set of all pairs (v,T") such that T" is the boundary
of a bounded, connected domain 2 and such that the following properties are satisfied:
(i) (Regularity). v € H5,, () and I' € H®, where Hj, (2) denotes the space of divergence free vector
fields in H*(2).

(ii) (Taylor sign condition). a := —Vp-np > ¢g > 0, where ¢g may depend on the choice of (v,T'), and
the pressure p is obtained from (v,I") by solving the elliptic equation associated to and
[L3).
For states (v,T') as above, we define their size by
(v, D)l 2= T + 0]l (g)-
Note, however, that H® is not a linear space, so || - ||im= does not induce a norm topology in the usual sense.

Heuristically, the state space H®* may be thought of as an infinite dimensional manifold, though a precise
interpretation of this is beyond the scope of this paper. For our purposes, it suffices to define a consistent
notion of topology on H*®. Although we will not describe the precise topology in the introduction, this
topology will allow us to define the space C([0,T]; H?) of continuous functions with values in H*, as well as
an appropriate notion of H® continuity of the data-to-solution map (vo,I'g) — (v(t),I';). Armed with these
notions, it makes sense to talk about the Cauchy problem.

Problem 1.2 (Cauchy problem for the free boundary Euler equations). Given an initial state (vg, o) € H?,
find the unique solution (v,T") € C([0,T]; H®) in some time interval [0, T].

A natural question to ask is what are the exponents s for which the Cauchy problem is well-posed in H.
Our first clue in this direction comes from scaling, which leads us to the critical exponent
d+1
Sc = o
and implicitly the lower bound s > s.. However, this does not tell the entire story, as even in the boundaryless
case a result of Bourgain-Li [I1] shows that well-posedness holds only in the more restricted range

d
> —+1,
S 2+

which is heuristically connected to another scaling law of the boundaryless problem; namely,
v(t,z) = A u(t, \x).

This latter exponent range s > % + 1 is exactly what we consider in our work. Specifically, in this article we
solve the Cauchy problem for the free boundary incompressible Euler equations at the same regularity level

as the incompressible Euler equations on a fixed domain.

The reader who is more familiar with the boundaryless case may ask at this point why we confine ourselves
to L? based Sobolev spaces, instead of using the full range of indices L? as in the boundaryless case. The
reason for this is precisely the boundary, where a portion of the dynamics is concentrated. In particular, as
a subset of our problem we have the irrotational case w = 0, when the flow may be fully interpreted as the
flow of the free boundary. This case, commonly identified as water waves, yields a dispersive flow, where L?
based Sobolev spaces are disallowed if p # 2. This is not to say that exponents p # 2 do not play a central
role in our analysis. Instead, we use them, particularly the case p = oo, in the definition of our control
parameters, which control the size and growth of our energy functionals. Precisely, our analysis involves two

such control parameters, which ideally should be appropriately scale invariant, as follows:
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(i) An “elliptic” control parameter A*, used to control implicit constants in fixed time elliptic estimates,
given by

(17) A = ol g g + IT i

which is exactly invariant under scaling.

(ii) A “dynamical” control parameter B*, used to control the growth of energy in time, given by
(1.8) Bt = [[ol Lip(ey + Tl 1o

This latter control parameter is 1/2 derivatives above scaling, and instead the scale invariant quan-

tity is || B¥|| 1, which is what will actually appear in our continuation criterion later on.

With these control parameters in hand, we would like to have energy estimates in the scale invariant form
d

(19) %Ek@%r) SA” BuEk(UaF)a

where E* denotes a suitable energy at the H* regularity. As noted earlier, these are our ideal choices, but

for our results we need to make some small adjustments and relax them a bit, as follows:

a) Working with A* would require edge case elliptic estimates in Lipschitz domains, bringing forth a
broad host of issues which are less central to our problem, if even possible to overcome. So, instead,
we will simply add e derivatives to the norms in A
b) In the case of B¥ we do not want to lose the sharp scaling, which is exactly as in the Beale-Kato-
Majda criteria in the boundaryless case. Therefore, we do not want to add extra derivatives as
we did with A*. However, as we shall soon see, the quantity ||Dial|r) appears as a control
parameter in the L? estimate for the linearized equation. As it turns out, in order to propagate our
low regularity difference bounds, control of |[D;al|z () will be needed. However, for the energy
estimates, a careful analysis will show that the control parameter B is sufficient, if we slightly
modify the form of the estimate (1.9). In both cases, maintaining the sharp top order control
parameter is non-trivial. In the difference estimates, it requires a careful analysis on intersections
of domains (and hence, in particular, performing elliptic theory on Lipschitz domains) and in the
energy estimates it requires (amongst several other things) finding a way to appropriately absorb
the logarithmic divergences occurring in the endpoint elliptic estimates when attempting to control
| Diall ey by B!, To deal with this latter issue, we will take some inspiration from the proof of
Beale-Kato-Majda [8].
The issues mentioned above have well-known counterparts in the boundaryless Euler flow. In fact, strong
ill-posedness of the boundaryless Euler equations has been recently proven in the “ideal” pointwise spaces
C' and Lip [12, 22].

1.2. Historical comments. The local well-posedness problem for the free boundary Euler equations has a
long history. For irrotational flows, the first rigorous local existence result in Sobolev spaces was obtained
by Wu [49, [50], in the late 1990s. Since then, various methods have been introduced to shorten the proofs,
lower the regularity threshold and allow for more complicated geometries. For a small sample of such results
we cite Beyer and Giinther in [9], Lannes in [32], Alazard, Burq and Zuily in [4, [5], Hunter, Ifrim and
Tataru in [26], Ai in [I, 2] and Ai, Ifrim and Tataru in [3]. Although physically restrictive, the irrotationality
assumption allows one to reduce the dynamics to a system of equations on the free boundary. Depending
on the choices made, this typically culminates in either the Zakharov-Craig-Sulem formulation of the water

waves problem used in [II, 2, 4 [5 2], or the holomorphic coordinates formulation used in [3 26]. In either
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case, the reduction to a system of equations on R¢~! greatly simplifies the analysis.

For the free boundary Euler equations with non-trivial vorticity, certain generalized systems based on the
above irrotational reductions have been proposed [13, [51]. However, historically, the most successful ap-
proach has been to use Lagrangian coordinates to fix the domain. For an execution of this approach to
proving local existence, the reader may consult the papers of Christodoulou and Lindblad [14], Coutand and
Shkoller [I5] and Lindblad [33]. One may also compare with the article [31] of Kukavica and Tuffaha, which
uses the so-called arbitrary Lagrangian-FEulerian change of variables, as well as the more recent advances in
the Lagrangian analysis presented in [7, [19].

In contrast to the above articles, we will utilize a fully Fulerian strategy to prove the local well-posedness
of the free boundary Euler equations. In other words, we will work directly with the physical equations
-7 and avoid the use of any non-trivial coordinates changes. On time-independent domains, both
the Lagrangian and Eulerian approaches have been widely successful in analyzing fluid equations. However,
for free boundary problems, the Eulerian approach has seen relatively little attention, due to the obvious
difficulty in having the domain of the fluid itself serve as a time-dependent unknown. Our aim in this article

is to directly confront this issue. Corollaries of our newly obtained insights include:

(i) The first proof of the continuity of the data-to-solution map for this problem.

(ii) An enhanced uniqueness result, requiring only pointwise norms of very limited regularity.
)
)
)

(v) A method to obtain rough solutions as unique limits of regular solutions at a Sobolev regularity

(iii) Refined low regularity energy estimates with geometrically natural pointwise control parameters.

(iv) A new, direct proof of existence for regular solutions.
that matches the optimal result for the Euler equations on R?.
(vi) An essentially scale invariant continuation criterion akin to that of Beale-Kato-Majda for the in-

compressible Euler equations on the whole space.

We will elaborate further on the ideas for obtaining the above results in Section [I.3] For now, it is impor-
tant to note that we are not the first to utilize an Eulerian approach to analyze the well-posedness of fluid
equations in the free boundary setting. The pioneering work in this regard is the remarkable series of papers
by Shatah and Zeng [41] 142, [43]. However, Shatah and Zeng primarily consider the free boundary Euler
equations with surface tension. While they are able to produce a solution to the pure gravity problem in
the zero surface tension limit, it seems that their construction at least requires bounded curvature, which
corresponds to greater regularity assumptions on the data than we need here. For this reason, the overlap
between their analysis and ours tends to be on a more philosophical level, which we will elaborate on further
in Section [I.3] A more direct comparison is with the memoir [47] of Wang, Zhang, Zhao and Zheng. In [47],
the authors construct solutions to the free boundary Euler equations in an unbounded graph domain at the
same Sobolev regularity that we achieve here. That is, they prove existence and uniqueness of solutions in
H? for s > % + 1. The approach in [47] is in the style of Alazard, Burq and Zuily [4, 5], though the addition
of vorticity makes the execution much more technical. Our approach is completely different to the one that
they follow and works well in more complicated fluid domains. Additionally, we prove properties —
above. We also remark that all other fully Eulerian approaches (see, e.g., [37, B8, 39]) follow Shatah and
Zeng, and hence require the regularizing effect of surface tension and higher regularity. The one step towards
a fully Eulerian proof without surface tension is the work [I7] of de Poyferré, who proves energy estimates

for the pure gravity shoreline problem. However, the energy estimates in [I7] have H* based control norms
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and no well-posedness proof is presented.

The goal of our paper is twofold. First, we intend to present a comprehensive, Hadamard style well-posedness
theory, with an aim towards proving sharp results. At the same time, we provide a novel, geometric analysis,
which we argue is more direct and streamlined than previous works. For instance, our proofs do not require
paralinearization or Chemin-Lerner spaces as in [47]. Moreover, our existence scheme is new and direct - it
does not use Nash-Moser, the approach in [47], or go through the zero surface tension limit as in [41] [42] [43].

For this reason, we believe that the techniques introduced in this paper will have a wide range of applicability.

Finally, we mention that the analysis we present here is for the case of a compact fluid domain. In the study
of the free boundary Euler equations, it is also common to consider the case of an infinite ocean of either
finite or infinite depth. The choice of compact fluid domain emphasizes the geometric nature of our problem,
and removes the temptation to flatten the domain into a strip or a half-space. Although some changes need
to be made, as with the analysis of the capillary problem [41l [42] 43] by Shatah and Zeng, the general
strategy we use here can be adapted to all three geometries. That being said, to streamline the exposition,
we do allow some of our estimates to depend on the domain volume, which is a conserved quantity for the

droplet problem.

1.3. An overview of the main results. In a nutshell, our main result asserts that the free boundary in-
compressible Euler equations are well-posed in H® for s > g + 1. However, simply stating this fails to convey
the full strength of both the result and of its various aspects and consequences. Instead, it is more revealing
to divide the result in a modular way into four independently interesting parts; namely, (a) uniqueness and

stability, (b) well-posedness, (c) energy estimates and (d) the continuation criteria.

To set the stage for our results, let {2, be a bounded, connected domain with smooth boundary I'.. Given
€,6 > 0, consider the collar neighborhood A, := A(T,€,0) consisting of all hypersurfaces I' which are d-close
to I', in the C'1¢ topology. As long as § > 0 is small enough, hypersurfaces in A, can be written as graphs
over I',. This permits us to define Sobolev and Hélder norms on these hypersurfaces in a consistent fashion.
To state our results, we will assume that a collar neighborhood A, has been fixed, and consider solutions with
initial data (vg, Ip) having Ty € A.. A more precise description of the functional setting will be given later,
in Section [3] For now, we remark that, while the collar neighborhood is very useful in order to uniformly
define the H® norms, it is not needed at all for the definition of our control parameters.

1.3.1. Uniqueness and stability. We start by stating our uniqueness result, which requires the least in terms

of notations and preliminaries. Here, of crucial importance are the control parameters

(1.10) A=A, = ||v||0§+€(ﬂt) + ||I‘tHC;,e, e> 0,
and
(1.11) Ban 1= [ollwz @y + 1Dl = + T4l oy

which represent slight adjustments of the ideal control parameters A* and Bf, as discussed earlier. Using

these control parameters, our main uniqueness result is as follows:

Theorem 1.3 (Uniqueness). Let e, T > 0 and let Qy be a domain with boundary Ty of Cclz reqularity. Then

for every divergence free initial data vy € WH°(Qyg), the free boundary Euler equations with the Taylor sign
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condition admit at most one solution (v,Ty) with Ty € A, and

T
sup Ac(t) +/ Baig(t) dt < oo.
0<t<T 0

To the best of our knowledge, Theorem is the first uniqueness result for the free boundary Euler equa-
tions which involves only low regularity pointwise norms. Indeed, as far as we are aware, all other papers

on this subject are content to prove uniqueness in the same class of H® spaces for which they prove existence.

While uniqueness is a fundamental property in its own right, in our work it can be seen as a corollary of a
far more useful stability result, which we now explain. Let (v,I';) and (vp, T ;) be two solutions to the free
boundary Euler equations with corresponding domains §2; and €2 5. An obvious objective is to show that if
(v,T;) and (vp, 'y ) are “close” at time zero, then they remain close on a suitable timescale. However, since
the domains € and €, are evolving in time, we cannot compare the solutions (v,I';) and (vp, T+ z) in a
linear way. To resolve this issue, we construct a nonlinear functional which quantifies the distance between

solutions and is propagated by the flow.

To avoid comparing solutions whose corresponding domains are very different, we harmlessly restrict ourselves
to solutions (v,I';) and (vp,I'yp) evolving in the same collar neighborhood A.. For such solutions we define
the nonlinear distance functional

(1.12) D((v,T), (vn,T)) := 1/

|v — vp|?dx + 1/ blp — pul* dS.
2 Ja, 2 Jp,

Here, p and pj, are the pressures, T, is the boundary of Q=N Q and b is a suitable weight function.
Morally speaking, the first term on the right-hand side of measures the L? distance between v and
vp. On the other hand, by the Taylor sign condition, p and p, are non-degenerate defining functions for I'y
and I' 5, so the second term on the right-hand side of gives a measure of the distance between I'; and
I'tp. In Section 4 we prove that does indeed act as a proper measure of distance between solutions.
More crucially, we prove that this distance is propagated by the flow, in the sense that

(1.13) %D((Ua ), (vn,Tn)) Sa.a, (Baigt + Bait,n) D((v, T), (vn, Tn)).
Here, Aj, and Bgig,p, are the control parameters and corresponding to the solution (vp, Iy ). An
immediate corollary of the stability estimate is the aforementioned Theorem m However, will
also prove to be useful in various other scenarios. For example, we will use it in our proof of the continuity
of the data-to-solution map, as well as in the construction of rough solutions as unique limits of regular

solutions.

1.3.2. Well-posedness. Our second main result is concerned with the well-posedness problem. To fix the
notations, we start with a collar neighborhood A, and s > g—l— 1. We then consider initial data (v, T'g) € H®
with T'g € A.. Viewing I'g as a graph over I',, we may unambiguously define its H® norm. With this setup,
we may state our well-posedness theorem as follows:

Theorem 1.4 (Hadamard local well-posedness). Fiz s > % + 1 and a collar A,. For any (vo,T'g) in H*
with Ty € A, there exists a time T > 0, depending only on ||(vo,To)|lm= and the lower bound in the Taylor
sign condition, for which there exists a unique solution (v(t),I';) € C([0,T]; H?) to the free boundary Euler
equations satisfying a proportional uniform lower bound in the Taylor sign condition. Moreover, the data-

to-solution map is continuous with respect to the H® topology.
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The regularity of the velocity in Theorem matches the optimal Sobolev regularity for the Euler equations
on R?. Indeed, as shown by Bourgain and Li [I1], the Euler equations are ill-posed in H*(R%) when s = %+ 1.

We note crucially that our article is not the first to reach the s > % + 1 Sobolev threshold for the free
boundary Euler equations. Indeed, this threshold was achieved for the first time in the recent memoir [47],
in the case of an unbounded fluid domain with graph geometry. However, it is important to note that the
approach in [47] is very different from ours, as it passes through a paralinearization and utilizes properties of
strip-like domains and Chemin-Lerner spaces. In particular, the approach in [47] cannot be easily modified
to the droplet problem, whereas our approach applies equally well in unbounded domains. Moreover, there
is no mention of the continuity of the data-to-solution map in [47]. To the best of our knowledge, Theo-
rem gives the first proof of this important property for the free boundary Euler equations. In addition,
our approach significantly refines the well-posedness theory by adding properties — above as well as
introduces an entirely new set of techniques that we believe will have broad applications.

When it comes to free boundary problems, the continuity of the data-to-solution map — if justified — is
usually proven by reformulating the problem on a fixed domain and then working with the standard notion
of continuous dependence on fixed domains. As far as we are aware, the only exception to this appears in the
work [41], 42, [43] of Shatah and Zeng, where continuous dependence is proven for the free boundary Euler
equations with surface tension directly in the Eulerian setting. The drawback of Shatah and Zeng’s proof,
however, is that it relies crucially on the regularizing effect of surface tension, so is not applicable to the
pure gravity problem. In particular, Shatah and Zeng do not construct a distance functional, as we do here.
For this reason, our robust proof which simultaneously avoids domain flattenings and works on a quasilinear

problem without regularizing effects can be seen as one of the main novelties of our paper.

1.3.3. Energy estimates. Controlling the growth of solutions to our boundary value problem is essential for
both local well-posedness and understanding potential blowup. This control is achieved via energy estimates.

Due to the complex geometry of our problem, the first challenge is to construct good energy functionals.

Fix an integer £ > 0. In light of Theorem and the stability estimate ([1.13]), it is natural to try to
construct an energy functional E¥ = E*(v,T') satisfying E*(v,T') =4 ||(v,T)||}. and the estimate

d
aE’G(v,r) <A BagE"(v,T).

Indeed, by Gronwall’s inequality, this would yield the bound

0Ol S o0 ([ CaBants)ds) 10D O e

for some constant C'4 depending only on A, the collar, and the verification of the Taylor sign condition.
Morally speaking, such an estimate would then allow one to conclude that solutions to the free boundary

Euler equations with the Taylor sign condition can be continued as long A remains bounded and Bgig € L;}.

However, there is one issue with the above estimates. Note that the control parameter A in (|1.10|) depends
only on the Holder norms of our main variables (the surface and the velocity) at (nearly) the correct scale.
However, the control parameter Bgis in (1.11)) depends also on the auxiliary variable Dyp. From the point

of view of the analysis of the free boundary Euler equations, this is completely natural. Indeed, even at the
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level of the linearized equation, one sees that the uniform norm of VD;p (or more specifically the uniform
norm of D;a, but these are essentially equivalent) appears as a control parameter for the L? energy estimates
in Proposition On the other hand, for the purpose of providing a clear and physical description of how
solutions to the free boundary Euler equations break down, we would ultimately like to use the control
parameter B := B¥ defined in , which depends only on the Holder norms of I' and v. To achieve this,
our key observation is that, as long as k > % + 1, we can use a log of the energy to absorb endpoint losses,

and hence prove an estimate of the form
(1.14) [ Depllyy 1. q,) Salog(l+ EMB.

An estimate akin to (|1.14) is not to be expected in the difference estimates, as the distance functional is
too low of regularity to absorb the logarithmic divergences inevitably arising from C' and W elliptic
estimates. With the above discussion in mind, the actual energy estimates we prove can be essentially stated
as follows.

Theorem 1.5 (Energy estimates). Fiz a collar neighborhood A, let s € R with s > % +1 and let k > % +1
be an integer. Then for T' restricted to A, there exists an energy functional H* > (v,T) — E¥(v,T) such
that

(i) (Energy coercivity).
(1.15) E*(0,T) ~a || (0, T) 200

(i) (Energy propagation). If, in addition to the above, (v,I') = (v(t),T:) is a solution to the free
boundary incompressible Euler equations, then E*(t) := E*(v(t),T}) satisfies
d
(1.16) 9 B* <4 Blog(1+ (0, 1) fax) B

Here, A is as in (1.10) and B = B*.

By Gronwall’s inequality, (1.15) and (1.16]) yield the following single and double exponential bounds of the
type

(), To)llfp Sa exp (/ CaBlog(1+ ||(v>F)||Hs)d8> I(vo, To) e
(1.17) 0

t
mwwm@mwdmwwuwm@mWAmmﬁ,

for all integers k > g + 1. We do not directly prove the analogue of Theorem for noninteger exponents
k. Nevertheless, as a consequence of our analysis in the last section of the paper, we do obtain the bounds
also for noninteger k. This is achieved by using frequency envelopes in order to combine the distance
functional and the energy estimates akin to a nonlinear Littlewood-Paley type theory. It is also worth noting
that a similar double exponential growth rate for the LL.L5° norm of the vorticity appears in the classical
Beale-Kato-Majda [8] criteria as a consequence of trying to weaken the natural control parameters of the

problem.

In order to understand the form of the energy functionals used in Theorem a key step is to identify
Alinhac style good variables for the problem, which are as follows:

(i) The vorticity w, which is measured in H*~1(Q).

(ii) The Taylor coefficient a, which is measured in H*~1(T").
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(iii) The material derivative D;a of the Taylor coefficient, which is measured in H*~2 (T).
Our energy functionals are constructed as certain combinations of well-chosen norms of the above good
variables. The general strategy for constructing these norms is to apply appropriate vector fields and elliptic
operators to w, a and D;a at the H* regularity in such a way that the resulting variables solve the linearized
equation to leading order. After this, the nonlinear energy E* may be essentially defined as the linear energy
evaluated at these good variables. As it turns out, after completing this process, we arrived at essentially
the same energy as [I7], which was derived by different means. However, as can be immediately inferred
from our control norms, the way we treat the energy is very different from [I7]. Indeed, without going into
details, we mention that the proof of Theorem [I.5| requires not only a delicate analysis of the fine structure
and cancellations present in the free boundary Euler equations, but also the use of a new family of refined
elliptic estimates. Although we refrain from stating them here in the introduction, these elliptic estimates
serve as an important part of the paper. Moreover, since they are quite general, we believe that they will

prove to be useful in other problems as well.

1.3.4. Low regularity continuation criterion. A very natural objective in the study of the Euler equations
is to find a geometric characterization of how solutions break down. For the Euler equations without free
boundary, this direction traces back to the famous paper of Beale, Kato and Majda [§]. In recent years,
interest in sharp blow up criterion for the free boundary Euler equations has risen, and progress has been
made by de Poyferré [16], Ginsberg [25], Wang and Zhang [46] and Wang, Zhang, Zhao and Zheng [47].
Here, we explain our rather definitive answer to this question, which is essentially a consequence of our local
well-posedness result in Theorem [[.4]and the energy estimates in Theorem [I.5] However, to avoid topological

issues, we must first introduce a notion of thickness for the fluid domain.

Definition 1.6. The fluid domain 2 has thickness at least R > 0 if for each z € T, B(xz, R) NT" is the graph

of a C1¢ function which separates B(z, R) into two connected components.
With this notion in hand, our continuation criterion reads as follows:

Theorem 1.7 (Continuation criterion). A solution (v,I') € C(H®), s > £ + 1, of the free boundary in-
compressible Euler equations with the Taylor sign condition can be continued for as long as the following

properties hold:
a) (Uniform bound from below for the Taylor coefficient). There is a ¢ > 0 such that

a>c>0.

b) (Uniform thickness). There is an R > 0 such that Q; has thickness at least R.

¢) (Control parameter bounds). The control parameters satisfy
A€ Ly, Be L.

One may compare our continuation criteria for the free boundary problem with the classical Beale-Kato-
Majda criteria for the boundaryless problem and note that they are essentially at the same level, with the
natural addition of the C'*>2 boundary regularity bound. Another minor difference is that we use the Lips-
chitz bound on the velocity v rather than the uniform bound on the vorticity w. One may ask whether it is
possible to further relax our criterion in order to use only the vorticity bound. The major obstruction is that
while in fixed domains the vorticity uniquely determines the velocity, in our case an appropriate boundary

condition is also needed, which is best described via the D;a good variable. So, a potential conjecture might
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be that in order to use only the vorticity bound in the interior, one might have to compensate by adding a
uniform bound on D;a, as seen in the linear control parameter Bj;, and in the difference estimates. That
being said, in this paper we have opted for a continuation criteria involving only the natural variables v and

I and no auxiliary pressure related terms.

As mentioned above, several recent articles [16], [25] [46] [47] have focused on obtaining improved continuation
criterion for the free boundary Euler equations. The most significant of these contributions is the memoir
[47], which proves that H* solutions to the free boundary Euler equations with the Taylor sign condition
can be continued after t = T as long as properties Eﬂ and @ in Theorem hold and

(1.18) tEs[l(l]pT] (1@l (Lrarzyr,) + () lwis(a,)) < oo for some p > 2d — 2.

Here, x denotes the mean curvature of the surface. To motivate their result, [47] recalls a question of Craig
and Wayne [30], which asks one to find (in the context of the irrotational water waves problem) the lowest
Holder regularity of the surface and velocity potential whose boundedness on [0,7] implies that one can
continue the solution past ¢t = T. Although makes significant progress on this question, it fails to
achieve purely pointwise norms and is far from scale invariant. Moreover, the criterion only applies
to solutions which a priori live in integer based Sobolev spaces H*. This limits the applicability of to
solutions with at least a half derivative of excess regularity. In contrast, Theorem replaces the criterion
v € LWL by the sharp and scale invariant criterion v € LLW 1% and only requires control of Hélder
norms of the free surface at the correct scale. In particular, Theorem gives a rather definitive answer to
Craig and Wayne’s question for the full free boundary Euler equations. For the state-of-the-art result for the
two-dimensional irrotational water waves problem, see [3]. Also, note that Theorem applies to solutions
in all Sobolev spaces H® with s > g + 1, not just to those in integer spaces. This improvement is by no

means trivial; rather, it follows from a careful usage of our distance functional.

1.4. Outline of the paper. The article has a modular structure, where, for the essential part, only the

main results of each section are used later.

1.4.1. The linearized equations. The starting point for our analysis, in Section[2] is to derive the linearization
of our problem in Eulerian coordinates. The linearized system will serve as a guide to several of the choices
made in our nonlinear analysis. In particular, it will suggest the correct variables to use, as well as the form
of our distance functional. Moreover, when proving energy estimates, the Alinhac style good variables we
construct will be shown to solve the linearized equations to leading order. This is also where the control

parameters A and By, (an enhanced version of B) make their first appearance.

1.4.2. Function spaces and the geometry of moving domains. Section [3] describes the appropriate functional
setting for our analysis. We begin by setting up a basic framework for our problem, including introducing low
regularity control neighborhoods which will allow us to establish uniform control over constants in Sobolev
and elliptic estimates in certain topologies for an appropriate family of domains. After defining the function
spaces and norms that we will be using, we define the state space H® where we will seek solutions to the
free boundary Euler equations. Unlike in problems on fixed domains, the state space H® will not be linear.
However, it will be equipped with an appropriate notion of convergence, allowing us to define continuity of

functions with values in H® as well continuity of the data-to-solution map.
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1.4.3. Stability estimates and uniqueness. The aim of Section [4 is to construct a nonlinear distance func-
tional which will allow us to track the distance between two solutions at very low regularity. The general
scheme is akin to the difference bounds in a weaker topology which are common in the study of quasilinear
problems on fixed domains. However, here there are fundamental difficulties to overcome, as we are seeking
to not only compare functions on different domains, but also track the evolution in time of this distance.
These difficulties are embedded into the nonlinear character of our distance functional; both careful choices
and delicate estimates are required to propagate this distance forward in time. To the best of our knowl-
edge, this is only the second time difference estimates have been successfully proven in the free boundary
setting. The other successful execution, which conceptually inspired the present approach, was in the case
of a compressible gas [I8, 27], which is very different from the incompressible liquid we consider here. In
particular, unlike in the gas case, the boundary of our fluid contains non-trivial energy, requiring interesting

geometric insights to understand.

As a consequence of our stability estimates, we deduce uniqueness of solutions at very low regularity. Also,
as we shall see in later sections, the low regularity distance bounds we prove will serve both as an essential
building block in our construction of rough solutions as unique limits of regular solutions as well as in the

proof of the continuity of the data-to-solution map.

1.4.4. Elliptic theory. The main goal of Section [o| is to introduce a new family of refined elliptic estimates
which will be crucial for obtaining the sharp pointwise control norms in the higher energy bounds. The
secondary objective of Section [fis to define a relevant Littlewood-Paley theory, collect various “balanced”
product, Moser and Sobolev type estimates, and note several identities for operators and functions defined
on moving domains. For the most part, the material in Section 5] does not rely on any specific structure of the
Euler equations, so should be applicable to other free boundary problems as well. In Section [6} we construct
the regularization operators which we will need for our existence scheme and the frequency envelopes for
states (v,I") € H® that we will use to establish the refined properties of the data-to-solution map.

1.4.5. Energy estimates. In Section [7| we establish energy estimates within the H¥ scale of spaces. As a
first step, we construct a coercive energy functional (v,I") = E¥(v,T") associated to each integer k > g + 1.
The scheme here is to identify Alinhac style “good variables” (wy,si) which solve the linearized equation
modulo perturbative source terms. We then define our energy as the sum of the rotational energy and the
linearized energy evaluated at these good variables. To prove the energy estimates, we split the argument in
a modular fashion into two parts. First, we prove the coercivity of our energy functional; that is, we show
that E*(v,T') ~ |(v,T)||}.. After this, we track the time evolution of the energy, establishing control of
E*(v,T) in terms of the initial data, with growth dictated by the pointwise control parameters A and B.
Both steps of this argument are delicate. In particular, the former makes extensive use of the refined elliptic
estimates from Section |5, and the latter requires us to identify and exploit various structural properties and

fine cancellations present in the Euler equations.

1.4.6. Construction of reqular solutions. Section [§]is devoted to the construction of regular solutions to the
free boundary Euler equations. The overarching scheme we utilize is similar to [27], which analyzed the case
of a compressible gas. However, we stress that the main difficulties in the incompressible liquid case are
quite different than for the gas, especially near the free boundary, as the surface of a liquid carries a non-
trivial energy. As a general overview, the scheme we utilize is constructive, employing a time discretization

via an Euler type method together with a separate transport step to produce good approximate solutions.
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However, a naive implementation of Euler’s method loses derivatives. To overcome this, we ameliorate the
derivative loss by an initial regularization of each iterate in our discretization. To ensure that the uniform
energy bounds survive, such a regularization needs to be chosen carefully. For this, we employ a modular
approach and try to decouple this process into two steps, where we regularize individually the domain and
the velocity. We believe that this modular approach will serve as a recipe for a new and relatively simple
method for constructing solutions to various free boundary problems. That being said, the execution of this

scheme is still quite subtle, requiring several novel ideas in addition to those coming from [27].

1.4.7. Rough solutions and continuous dependence. The last section of the paper aims to construct rough
solutions as strong limits of smooth solutions. This is achieved by considering a family of dyadic regular-
izations of the initial data, which generate corresponding smooth solutions. For these smooth solutions we
control on one hand higher Sobolev norms H¥*, using our energy estimates, and on the other hand the L?
type distance between consecutive ones, from our difference estimates. Combining the high and the low
regularity bounds directly yields rapid convergence in all H! spaces for I < k. To gain strong convergence in
H”, we use frequency envelopes to more accurately control both the low and the high Sobolev norms above.
This allows us to bound differences in the strong H* topology. Interpolation and a similar argument yields
local existence in fractional Sobolev spaces as well as continuous dependence of the solutions in terms of
the initial data in the strong topology. Finally, our main continuation result in Theorem follows along

similar lines, given the careful treatment of our control norms in the energy and difference estimates.

For problems on R?, the scheme outlined above for obtaining rough solutions from smooth solutions, good
energy estimates and difference estimates is more classical; see the expository article [28]. However, as we
shall see, the fact that solutions are all defined on different domains leads to some new subtleties in our free

boundary setting.
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2. THE LINEARIZED EQUATION

The first goal of this section is to formally derive the linearization of our problem, working entirely in Euler-
ian coordinates; this is the system of equations . Then, we prove Theorem which asserts that the
linearized system is well-posed in L?, with energy bounds determined by our sharp control parameters. The
key elements here are the linearized energy and the basic energy estimate .

Conceptually, the linearized system is an essential piece of the puzzle. On a practical level, however, it is not
immediately useful in proving well-posedness, as it is not clear that C! one parameter families of solutions
exist in the first place. It is only a posteriori, after well-posedness is established, that the linearized energy
estimates may be used to derive bounds for differences of solutions. Instead, we will use our understanding

of the linearized system to guide us in our choice of distance functional in Section {4] and later in our choice
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of energy functionals in Section [7]

To derive the linearized system, we take a one parameter family of solutions (vp,pp) defined on domains

Q 1, with (vo,po) := (v,p) and Qo := Q. We define w = Opvp|p=0 and g = Ipn|n=0-

In €, the linearized equation is rather standard:
oyw~+w-Vv+v-Vw=-Vg,
V-w=0.

However, we also need to linearize the kinematic and dynamic boundary conditions on the surface I';. For
this, let us denote by I';j the free surface at time ¢ for the solution (vp,pn), so I'o := I'y. Fix a one
parameter family of diffeomorphisms ¢p,(t) : 't — T'y p, with ¢o(t) = Idr,. The dynamic boundary condition
asserts that for every point x € Ty,

pa(t, on(t)(x)) = 0.
Differentiating in h and evaluating at h = 0 gives

qlr, = =Vplr, - ¥(),
where (t) := Z-¢(t)|n—0. Using that Vp|r, is normal to I'; we deduce that
(2.1) qlr, = =Vplr, - np, ¥ (t) - nr, =: as.

Here, we define s := )(t) - np, which we loosely interpret as the normal velocity in the parameter h of the
family I'y 5, at h = 0. We will use this as one of our linearized variables. Note that since a > 0, s does not

depend on the choice of diffeomorphisms ¢y, (t).

Next, we linearize the kinematic boundary condition. Analogously to v - nr, describing the normal velocity
of the free surface, we expect w-nr, to describe the “normal velocity” of our linearized variable s. Therefore,

up to a perturbative error, D;s should agree with w - nr,. In fact, we obtain the relation

(2.2) Dis —w-np, = s(nr, - Vo) - nr,.
To derive (2.2), we note that (1.2 and (1.3 imply that
(2.3) Dip=0 only.

This is the equation that we will linearize to obtain (2.2)). As before, let ¢p,(t) : I'y — I'y , be a diffeomorphism.
We then have for x € Ty,

[(O¢ + vn - V)pn](t, ¢n(t)(x)) = 0.
Taking h derivative and evaluating at h = 0 yields,

(2.4) w-Vp+ Dyg+VDip-9p=0 onTYy.
Using (2.1]), and that VD;p is normal to T’y by (2.3, we deduce (2.2)) from (2.4)) after some simple algebraic
manipulation. Indeed, we have Vp|r, = —anr,. Then using the relation ¢r, = as, we compute D;q =

aDys + sDya. This reduces (2.4) to

(2.5) —aw - nr, +aDys + sDya+ sV Dyp - np, = 0.
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After division by a, the first two terms in ([2.5) evidently align with the left-hand side of (2.2). The right-
hand side of (2.2) appears by commuting the gradient with the material derivative in the last term of (2.5)),
and by using the fact that Vp - Dynr, = 0 to rewrite sDya = —sD(Vp -np,) = —sD;Vp - np,.

Putting everything together, the linearized system takes the form:
Dyw+Vqg=—w- Vv in 4,
V-w=0 in Qt,

(2.6)
Dis —w-np, = s(nr, - Vv) -np, on Ty,

q=as on I’y

where the terms on the right-hand side can be viewed as perturbative source terms.

In order to study the well-posedness of the linearized system (2.6]), we introduce an enhanced version By;,

of the control parameter B*:
(2.7) Biin(t) == ||1171Dta||L°°(Ft) + HVU”L‘X’(Qt)-
Using this, we may state our main linearized well-posedness result as follows.

Theorem 2.1. Let (v,T") be a solution to the free boundary incompressible Euler equations in a time interval
[0,T] so that a > 0, A* stays uniformly bounded and By, € LY. Then the linearized system (2.6)) for (w,s)
is well-posed in L*(Q) x L*(T) in [0,T].

Here we recall that 2 and I'" are time dependent. The rest of this section is devoted to the proof of this
very simple theorem. The basic strategy is to construct a suitable energy functional and prove correspond-
ing energy estimates. Once this is done, well-posedness follows via a standard duality argument, which is
left for the reader. To execute this argument, one simply notes that the adjoint system is essentially iden-
tical to the direct system , modulo perturbative terms, and that the energy estimates are time reversible.

Below, we will work with a slightly more general system, since this is what will appear in the higher order
energy bounds later on. We define the generalized linearized system as follows:

Dyw+ Vg=f in Qy,

V-w=0 in Qt,
(2.8)

Dis —w-np, =g on Iy,

q=as on I,

where we allow for arbitrary source terms f and g on the right-hand side of the first and third equation.

It remains to prove a suitable energy estimate for the system (2.8)). The natural energy associated to

this system is
1 2 1 2
(2.9) Eiin(w,s)(t) = = |lwl*dx+ = | as®dS.
2 Ja, 2 Jr,

Using (2.9), the main energy estimate for the generalized linear system is as follows:
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Proposition 2.2. Suppose a > 0. Then the system (2.8]) satisfies the energy estimate
d

(2.10) %Elin(wv 5)(t) < BiinEiin(w, s)(t) + (as, g)L2(r,) + (w, f)r2(0,)-

We note that the energy functional (2.9)) is also the energy functional for the linearized system (2.6, and
that this proposition yields energy estimates for (2.6]), thereby concluding the proof of Theorem

Proof. We will make use of the following standard Leibniz type formulas (see; for example, [20, Appendix
Al).

Proposition 2.3. (i) Assume that the time-dependent domain Q flows with Lipschitz velocity v. Then
the time derivative of the time-dependent volume integral is given by
d
— ft,z)de = Dif + fV-vdz.
dt Q4 O

(i) Assume that the time-dependent hypersurface T'y flows with divergence free velocity v. Then the time

derivative of the time-dependent surface integral is given by

d
— | ft,x)dS= | D.f — f(nr, - Vv)-nr, dS.
dt I T,
Now, to prove the energy estimate (2.10)), we apply Proposition to obtain
d 1 1
— Ein(w, 8)(t) = Dyw - wdzr + / asDysdS + = | Dias*dS — —/ [nr, - Vv - nr,]as® dS
dt Q Iy 2 Iy 2 Iy

(2.11)

< Dyw - wdz + / asDys dS + Biin Eyin(w, s)(t).
Qy Iy

Integrating by parts, we obtain

th~wd33—|—/ asD;sdS = w~fdx—|—/ asD;sdS — quw - nr, dS
Qt Ft Qt Ft I‘lt
= <a$,9>L2(rt) + (w, f>L2(Qt)-
Combining this with (2.11)) completes the proof. a

3. ANALYSIS ON MOVING DOMAINS

One difficulty when working directly on moving domains is that many of the standard Sobolev and elliptic
estimates have domain dependent constants. It is therefore necessary to work in a framework which allows
for uniform control of these constants in certain topologies. This section is devoted to dealing with this issue.
Our approach in this regard is somewhat analogous to that of Shatah and Zeng [41], 42] [43] and de Poyferré
[I7, Section 3], but with the key difference being that our control neighborhoods will only be uniform in the
pointwise C' or C1¢ topologies as opposed to the stronger L? based topologies considered in those papers.

This will be essential for establishing the pointwise continuation criterion for solutions.

3.1. Function spaces. To begin, we precisely define the function spaces and norms that we will be using.
Throughout, Q C R? will denote a bounded, connected domain. We define H*(Q2), s > 0, as the set of all
f € L*(Q) such that

(3.1) 1Nl =) := inf {||F || e gay : F € H(RY), Flg = f}

is finite. Here, |- ||+ (re) is defined in the standard way, via the Fourier transform. We let H(€2) denote the
closure of C§°(Q) in H*(Q2) and identify H*(f2) isometrically with the dual space (H§(2))*. Importantly,
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with this definition of the H® norm, the constants in Sobolev embedding theorems (either H® — LP or
H?® — C?) are independent of . For regular enough domains and integer s, the norm defined in (3.1) is

equivalent to the standard one. We will precisely quantify this equivalence later.

We next define the regularity of the boundary of a connected domain 2, which is characterized in terms of
the regularity of local coordinate parameterizations of 9. Indeed, in general, an m-dimensional manifold
M C R? is said to be of class C** or H®, s > %, if, locally in linear frames, M can be represented by graphs

with the same regularity.

If s > %, then given ) as above with boundary of class H®, we can define what it means to be an
H" function on 9N for s > r > —s. Indeed, these are simply the functions whose coordinate representatives
are locally in H™(R?~1). It is easy to see that the space of H" functions on 92, s > r > —s, can be made into
a Banach space. Indeed, a norm can be chosen by taking a covering of 92 by a finite number of coordinate
patches and an adapted partition of unity. However, there is one problem with this approach. Although
such a norm is well-defined up to equivalence, the precise value of the norm is dependent on the choice of
local coordinates. Since we will be dealing with a family of domains, we need to make sure that we define

norms on their boundaries in a consistent and uniform way.

3.2. Collar coordinates. As a first step towards resolving the above issue, we fix a bounded, connected
reference domain €, with smooth boundary I'y := 99Q,. We define H® and C*2 bhased norms on T, by
making an appropriate choice of local parameterizations of I',. Letting § > 0 be a small positive constant,
we define N(T',,d) to be the collection of all C* hypersurfaces I' such that there exists a C! diffeomorphism
®p . Ty — T with

||®r — idr,

crr.) <90
If 6 > 0 is small enough, we can represent hypersurfaces I' € N(T',, ) as graphs over I',.. Indeed, we denote
the outward unit normal to Iy by nr,. Following [43] Section 2.1], if we have a smooth unit vector field
v: T, — S 1 which is suitably transversal to ', (that is, v - np, > 1 — ¢ for some small ¢ > 0), it follows
from the implicit function theorem that there exists a § > 0, determined by I', and v, such that the map

0 :T, x[=6,0] = R, oz, pn) =z + pv(x)

is a O diffeomorphism from its domain to a collar neighborhood of T',.. If § > 0 is small enough, the above

coordinate system associates each hypersurface I' € N (T, d) with a unique function np : T'x — R such that
(3.2) Or(x) := p(x,nr(z)) = 2+ nr(z)v(z)

is a diffeomorphism in C*(T',,I" C R?). We can think of the map ®r as a way to represent I' as a (global)
graph over I',. With this notation in hand, we can now define what it means to be a H® hypersurface which

is close to I'..

Definition 3.1. For § > 0 small enough and « € [0, 1), define the control neighborhood A(T,«,d) as the
collection of all hypersurfaces I' € N (T, ) such that the associated map nr : T, — R satisfies

el e,y < 6.

Definition 3.2. Suppose s > 0, I' € N(T,, ) for § > 0 small enough, and the associated map nr : T'x — R
satisfies nr € H*(I',). We then define the H® norm of T" by

Tz = llmellme(r.)-



WELL-POSEDNESS FOR THE INCOMPRESSIBLE FREE BOUNDARY EULER EQUATIONS 19

In the above definitions, ||nr||ct.«(r,) and [|nr| g=(r.) are computed with respect to fixed, independent of T,
local coordinates on I',. In an analogous way, we define for v € [0,1) and integers k > 0, the C*¥ norm,
IT|lck~. As was essentially noted in [43, Section 2.1], when 0 < § < 1, each I' € A(T',, «, §) is associated to
a well-defined domain 2.

Remark 3.3. One key point in Definition is that we only require I" be close to I', in the C'1* topology,
as opposed to the stronger L? based topologies used in [I7, 41}, 42, [43]. In practice, we will want the control
topology to be as weak as possible. For our purposes, we will typically take a = € > 0 for some arbitrarily
small (but fixed) constant e > 0.

Remark 3.4. A second key point in Definition concerns the choice of the small parameter §. This will
not be arbitrarily small, but instead its size may also be chosen to depend on weaker topologies; namely, (i)
the C'¢ norm of T, and (ii) the thickness (see Definition of the domain 2. This will serve two purposes:

e To allow us to place any rough H*® boundary I" within a suitable control neighborhood A(T, €, §).
e To allow us to obtain the robust continuation result in Theorem [I.7] which does not require any
reference to control neighborhoods.

Following the discussion in the above two remarks, throughout the article we will often abbreviate A(T ., €, )
by A, where the suppressed parameters € > 0 and § > 0 are understood to be small but fixed universal
parameters, which depend only on s and on the thickness of (2.

3.3. State space. Fix a collar neighborhood A, and s > % + 1. We define H® as the set of all pairs (v,T)
such that T' € A, is the boundary of a bounded, connected domain € and such that the following properties
are satisfied:

(i) (Regularity). v € H3;, () and I' € H*, where Hj, () denotes the space of divergence free vector
fields in H*(Q).
(ii) (Taylor sign condition). a := —Vp - nr > ¢y > 0, where ¢y may depend on the choice of (v,T'), and
the pressure p is obtained from (v,T") by solving the standard elliptic equation associated to
and .
Given initial data (vg,Ig) in the state space H®, our eventual goal will be to construct local solutions
(v(t),T) that evolve continuously in H*. To accomplish this, we must define a suitable notion of topology
on our state space. This will enable us to establish two key properties of our flow; namely,
(i) Continuity of solutions with values in H.
(ii) Continuous dependence of solutions (v(t),I':) as functions of the initial data (vg, o).
Note that since H® is not a linear space, the above two continuity properties require some explanation. To
measure the size of individual states (v,I') € H?, we define ||(v,T)||%. := [|T]|%- + [|v]|? <(q)- However, since
H? is not a linear space, || - |[g= does not induce a norm topology in the usual sense. Hence, we still need an

appropriate way of comparing different states. Motivated by [I8] [27], we define convergence in H? as follows.

Definition 3.5. We say that a sequence (v,,I',,) € H® converges to (v,I") € H® if
(i) (Uniform Taylor sign condition). For some ¢y > 0 independent of n, we have

Ap,a > co > 0.

(ii) (Domain convergence). I',, — I' in H®. That is, np, — nr in H*(T',) where nr, and nr correspond

to the collar coordinate representations of I';, and I', respectively.
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(iii) (Norm convergence). For every e > 0 there exists a smooth divergence free function ¥ defined on a
neighborhood Q of Q with 10[] g7+ (@) < oo and satisfying

lv =0 s < €

and

limsup ||U7L - IZ’~}||HS(Q7L) S €
n—oo

With the above notion of convergence, it makes sense to define C([0,T]; H®). We remark, however, that
in [17, 4T, [42] 43], C(]0,T]; H?) is defined in a slightly different way, via the existence of an extension to a
continuous function with values in H*(R%). In Section we construct a family of extension operators
which depend continuously in a suitable sense on the domain, making the above two notions of continuity

essentially interchangeable.

4. DIFFERENCE ESTIMATES AND UNIQUENESS

Comparing different solutions is key to any well-posedness result. Since our problem is quasilinear, such a
comparison cannot be achieved uniformly in the leading H® topology, but instead only in weaker topologies.
The main result of this section provides a Lipschitz bound for the distance between two solutions in the
L? topology, akin to our bounds for the linearized equation. Notably, our distance bounds propagate at
the level of our control parameters, which require for instance a Lipschitz bound on the velocity but no
higher regularity. This is what will allow us to establish uniqueness of solutions under very weak regularity
assumptions. Moreover, as we shall see shortly, these low regularity distance bounds also serve as an essential
building block in our construction of rough solutions as unique limits of smooth solutions, as well as in our

proof of the continuity of the data-to-solution map.

The fundamental difficulty in achieving our distance bounds is the need to compare states which live on
different domains. To overcome this difficulty, we construct a “distance functional” which simultaneously
captures the distance between (functions on) different domains and admits a time evolution that we are able
to track. To the best of our knowledge, no such low regularity difference bounds or even uniqueness results
were previously known for any incompressible free boundary Euler model. Instead, we take our cue from
the work [27] of the first and the third authors, which considers a similar free boundary problem but for a
compressible Euler model. We note, however, that the similarity between the uniqueness argument here and
its counterpart in [27] is only at the conceptual level, as the two flows have very different behaviors both

inside the domain and near the free boundary.

4.1. The distance functional. Our first objective is to use the linearized energy as a guide to construct
a distance functional which will be suitable for comparing nearby solutions. We begin by fixing a collar
neighborhood A(Ts,¢,d), where € > 0 and § > 0 are small. We then suppose that we have two states (v,T'),
(vn,T'y) with respective domains €2, 5. We let npr and nr, be the corresponding representations of I" and
T';, as graphs over I',. Following the linearized energy estimate, we aim to define analogues of the linearized
variables w and s, which heuristically should measure the L? distance between v and v;, and the distance
between I' and I'j,, respectively. One technical caveat is that v and vy, are not defined on the same domain.
For this reason, we define Q=0n Qn. We can represent the free boundary [ for Q as a graph over T,
via the function gz = nr A nr,. Note that although the graph representation 7 is well-defined, [ is only
Lipschitz in general, so will not be in A(T's,¢€,0).
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To measure the (signed) distance between I' and I'y,, we define s} : Iy — R by

(4.1) sp(@) = e, () — e (2).

As will become evident below, although s} correctly measures the distance between the free hypersurfaces,
it has the “wrong” domain. To fix this, we define the variable s : I 5 R by pushing s} forward to the
hypersurface I'. In other words, for z € I, we define s;(z) = sj(m(x)), where m denotes the canonical
projection, mapping the image of I, x [—4,d] under ¢ back to I',. For convenience, we also extend v to
a vector field X defined on the image of ¢ via X (x) = v(w(x)). We will not actually use the displacement
function s, directly in the difference estimates below. In particular, it will not act as our desired analogue of
the linearized variable s. This is because its dynamics are somewhat awkward to work with. Instead of using
Sh, it is far more convenient (and geometrically natural) to use the the pressure difference p — pj, (along with
a suitable weight to be defined below) to measure the distance between I and T'j. To motivate this, recall
that for solutions to the free boundary Euler equations, the Taylor sign condition implies that p and p;, are
non-degenerate defining functions for I'; and I'; ;, within a suitable collar neighborhood. Therefore, on the
boundary of Q; = Q, N Q4 1, p — pp, should be proportional to the displacement function s;. The dynamics
of p — pp turn out to be much easier to work with than those of sj, as terms involving p — p, will appear

naturally when we use the free boundary Euler equations to compare solutions.

With the above motivation in mind and using the linearized equation as a guide, we define our distance

functional as follows:
(12) D((w. 1) (00, D)) = Dlwon) = 5 [ o=+ 5 [ blp =l ds,
where the weight function b is defined by
b:= a_llfmF + agllfmrh-
As p — pp, vanishes on I' N Ty, we may rewrite the distance functional in the slightly more convenient form

1 _
D(v,vp) /|v—vh|2da:+ / _1|p—ph|2dS+§/ ah1|p—ph|2d57

Ap,

where A:=TNT —I'NT, and Ay :=TNT, —TNT.

Letting F denote the average of F along the flow ¢ between the free surfaces, the fundamental theorem of

calculus implies that for z € f,

—Vpp - Xsp(x) ifxe A,

(4.3) pu(z) = p(z) = —VUp - Xsp(x) if z € Ap.

Therefore, thanks to the Taylor sign condition and assuming the regularity p,pn, € C%¢, we should have
Ip — pr| = |sn| on ' within a tight enough collar neighborhood. The precise manner in which we have
this proportionality will be made clear shortly. Finally, note that, for solutions to the free boundary Euler

equations, a simple computation yields the following equation for v — vy in Q:

Di(v —vp) +V(p —pn) = (v —v) - Vop,

44
“4) V-(v—u,) =0.
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Remark 4.1. Although it is not particularly important for the difference estimates, we note that the distance
functional makes sense for general (not necessarily dynamical) states (v,I") and (vp,I';). Indeed, given
suitable states (v,I') and (vp,I's), we can always associate pressures p and p, by solving the standard
elliptic equation associated to and . As we will see in Section |7} it is very important that our
energy functional for the H* energy bounds be defined for general states (v,T') € H*.

4.2. Difference estimates. We are now ready to propagate difference bounds for two solutions to the free

boundary Euler equations.

Theorem 4.2 (Difference Bounds). Let 0 < ¢, < 1 and let A, = A(T'4,¢,0) be a collar neighborhood.
Suppose that (v,Ty) and (vy,T'yp) are solutions to the free boundary Euler equations that evolve in the collar
in a time interval [0,T] and satisfy a,ap, > co > 0. Then we have the estimate

d

5P, vn) Saa, (B+ Bu)D(v, vp)

where

B = [lollwriee @ + [Tell g + 1Dpllwrey, A= vl +ITellere,

I+
C27(Q)
By, and Ay, are the analogous quantities corresponding to vy, pn, Dlpn and 'y n and we have implicitly

assumed that our solutions have regularity B, By, € LY and A, A, € LS.

Remark 4.3. It is worth remarking that all of the results in this section hold equally well if the control
parameter B is replaced by
Be = [[vllcren + ITell 015
which depends solely on the regularity of v and I'y. This is because we will later prove an elliptic estimate
of the form
| Dipllwro,) Sa Be.
See Lemma and Remark for details. We prefer, however, to work with the control parameter B

defined above as its L. norm is scale invariant.

Proof. For simplicity of notation, we drop the ¢ subscript for domains below. We also use <4 as a shorthand
for <4 a,. To ensure that we can estimate expressions involving the pressure in terms of the control

parameters A and B above, we need the bounds
(4.5) Iplere@y Sals bl oy o) Sa B

as well as the analogous bounds for py. The proof that these bounds hold will be postponed until later when
the requisite elliptic estimates are developed. See Lemma and Lemma for details. Now, to proceed
with the difference estimate, we recall the identity

(4.6) %D(mvh) = %% /Q |v — vy, |? da + %% /Aa_1|p — pu|?dS + %% /Ah a; tp — pn|* dS.

To compute the first term, we would like to use Reynolds’ transport theorem, as in Proposition 2.3} However,
here we do not have a good velocity field © so that Q flows with velocity @. Constructing such a field seems to
be at the very least impractical, so we will instead allow for a correction term which is a boundary integral.
For this purpose, suppose that D(t) is a time-dependent domain for which we may define at almost every
point of the boundary a normal velocity v, for the boundary. Note that if D(t) were flowing with velocity
v, then vy = v - nyp(s), where nyp() is the outward unit normal. For more general velocity fields v on D(t),

we have the following proposition.
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Proposition 4.4. Given a velocity field v defined on a time-dependent domain D(t) with Lipschitz boundary
flowing with normal velocity vy, we have

d
— fdxr = th—i—V'deﬂU‘f'/ f(vo —v-nape) dS.
dt Jp D(t) aD(t)

The proof is a straightforward application of the divergence theorem.

In our setting, we need to make a vector field choice on €Q; this will simply be the velocity v, though we
could have equally chosen v,. We remark that in the corresponding argument in [27] the average of the two
was used, in order to better symmetrize the problem. However, the argument here is slightly more robust,
and such a choice is not needed.

For this choice of v, we examine the boundary weight v - ngp(;) — v» appearing in the above formula. For

this we use the disjoint boundary decomposition
I=AUA,U (T'NnTy),

where the normal ny is given a.e. by

nr in AU (Fﬂfh),
ns =
r nr, in Ay, U (F N Fh),

with the two normals agreeing a.e. on I' N I'y. Correspondingly, for almost every point on I' we have
lup — v - np| < v — vy, as can be seen by working with the collar parameterization np A nr, for T' and the
kinematic boundary conditions for I' and I',.

We now use Proposition and the incompressibility of v for each of the three terms in (4.6)). We begin by
studying the first term, where we obtain

1d 1 1
iﬁ/()h)—vhfdxg5/51Dt|v—vh|2dx+§A|vah|3dS.

We note that, unlike in the case of the linearized equation, here we obtain a nonzero boundary term. However,

(4.7)

this term has the redeeming feature that it is cubic in the difference v — vy,. To estimate it, we use a simple
variant of the trace theorem. Indeed, as I, T, € A, we may find a smooth vector field X defined on R? with

C* bounds uniform in A, which is also uniformly transverse to I'. By the divergence theorem, we then have

1 3
= —vpPdS S | X -nplo —un*dS S (B+ Bu)|lv — w7 g
18) Q/f\v vl N/f nplv —onl”dS S (B + Bu)llv = vnll72 g

< (B + Br)D(v,vp).

Now, for the remaining term in (4.7)), we use (4.4) and integrate by parts to obtain

1
f/Dt|v—vh|2dx
2 Ja

(4.9) =— /f(p —pn)(v—vp) -npdS + / (v —wp) - [(vp, —v) - Vup| dx

Q

[(U —vp)Di(v — vp) dx
Q

IN

- /f(p —pu)(v— vn) - npdS + (B + By)D(v, vp).
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Using the decomposition I' = AUAj, U(I'NT},) and using that p—py, = 0 on TNT, by the dynamic boundary
condition (|1.3)), we can write

—/(p—ph)(v—vh)-nde:—/(p—ph)(v—vh)-nrdS— (p—pn)(v—up) nr, dS
T A Ap

— [ @ - pe o) VpdS [ a0 )0~ ) Vpnds.

A Ap

Now, define

—1 1d -1 2

Ji= [ a”(p—pn)(v—vn) VpdS+ 5= [ a” |p—pal"dS,
A A

and

_ 1d _
Jp = / a,'(p—pn)(v —vn) - VppdS + **/ a, ' p — pn|* dS.
A, 2dt J a4,
Combining (4.8) and (4.9)), we obtain

d
aD(U»Uh) S (B + Bp)D(v,vp) + J + Jp.

It remains to show that
J+Jn <a (B + Bh)D(”U,”Uh).

We show the details for J. The treatment of J;, will be virtually identical. We begin by using Proposition [2.3
to expand
1d S o 2gq L -2 o250 1 1) 120 )

a " |lp—pn|©dS = a~“Dyalp — pp|® dS a” " |p —pu|“[nr - Vo - np]dS
2dt J 4 2 /4 2 J4
(4.10)
+ / a”'(p = pr)Di(p — pn) dS.

A

The validity of the identity is justified by noting that |p — py|? vanishes to second order on I' N Ty,
so one can extend by zero to write the integral on the left-hand side as an integral over I', apply standard
identities there, and then return to an integral over A. From and adding the first term in the definition
of J, we obtain (noting that by the kinematic and dynamic boundary conditions, we have D;p = 0 on A),

J<a— / 0™ (p — pu) Dl'pndS + / ™ (p— pn) (v — vn) - V(p — pn)dS + BD(v, vn).
A A

In the above, we used the standard identity (5.35)) to control D:a. For the first term on the right-hand side
we use that DI'p,, vanishes on Ty, (4.3, the fundamental theorem of calculus, the Taylor sign condition and

(4.5), to estimate
D pnl Sa lIVDgprll<lsnl =a IV Dypallre|p — pu| Sa (B + Bu)lp — pal-
Hence,
/ a”!(p — pn)D}'pndS Sa (B + Bu)D(v,vn).
A
It remains to estimate the cubic term, and show that

(4.11) ’/A a '(p—pr)(v—vy)-V(p—pn)dS| Sa (B+ Bp)D(v,vp,).

We will need to perform a more careful analysis here, so that only the pointwise control terms appear in
the estimate. Note that if we had instead settled for L? based control parameters, this cubic term could be

handled relatively easily.
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We recall that A CT. Given a point = € A, its distance to I'j, is proportional to |(p — pp)(x)|. We consider
a locally finite Vitali type covering of the set A with countably many balls B; = B(z;,r;) of radius r;
proportional to |(p — pr)(x;)|, so that in particular we have B; C Q. We denote by D; the energy of the
difference in the region Bj, i.e., the integral in restricted to B;. Then

Z Dj S D((’UJ—‘), ('Uh7rh)).

Hence, by the uniform bound on ¢~ !, it would suffice to show that
(112 [ A= =) V- pl d Sa (B+ Bi)D;.
ANB;

We will indeed show that this bound holds for the bulk of the expression on the left. However, for the
remaining part we will return to a global argument. For A we just use the uniform Lipschitz bound in this
analysis. We first note that in QN B; we have

|p — pnl ~a 1y,

which after integration yields a good bound for r; within B;:
(4.13) | p-mPdsxari 54,
ANB;

Next we consider v — vy, for which we use the C 3 norm, which is part of our control norm A, in order to
estimate the surface integral by the ball integral. This yields

(4.14) / v —vp|?dS <a rj_l/ lv — v | do + r;lA2 <a rj_le + T?A2 <a r]-_le.
.AﬁBj QﬂBj

It remains to consider V(p — pp,). Our starting point is the global bound

(4.15) IVpl| + IVl y SA B+ B,

c3 (@) 3 (Qn

which is noted in 1) This allows us to replace V(p — pp) with its average V(p — pn) ; in any smaller ball
Bj cOn B; of comparable size, because

1
IV(p = pn) = V(o = pr)ill L @np,) Sa s (B+ Bn).
Putting everything together we arrive at
o =)= o) (V=) = T =5 ) 45 54 (B+ Bu)D,.
ﬁBj

which represents the bulk of (4.12)).

It remains to estimate the contribution of the local average of V(p — pp,). Here we view p — p, as a solution
to the following Laplace equation in Q:

Alp — pr) = —tx(Vv)* + tr(Vor)?,
P —Pnp = 9 :=pla, —prla.

We split the problem for p — p, into an inhomogeneous one with homogeneous boundary condition, and a

homogeneous one with inhomogeneous boundary condition,

P —Dh = (P —Dn)ink + (P — Dh)hom-
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For the inhomogeneous problem we can write the source term in divergence form to estimate
[tr(Vo)? = tr(Von)? [l -1y S (B + By)D:,
which by a simple energy estimate gives a global L? bound
IV (0 = p)inll 2 (@) Sa (B + Br)D*.
This in turn yields a bound for the corresponding averages by Holder’s inequality,

SN — pr)inng|? Sa (B + By)?D.
J

The contribution of this into is then estimated using ) and (| as follows:

Jinh = Z/ p = pnllv = val[V(p = pr)inn,s| dS
; JANB;

d+1 .
Sa ZT’Z v = vnll2(anB;) V(P = Pr)inn.;]

NA Z 2 |v pb— ph)znh;|

,SA (B + Bh)D7

where in the last step we have used Cauchy-Schwarz with respect to j.

For the homogeneous term, on the other hand, we need to carefully examine the regularity of the Dirichlet
data §. On one hand, by the definition of the distance D we have the L? bound

(4.16) 161227 Sa D.

On the other hand, by (4.15]), on each of the two regions Ay, respectively A, we have formally
(4.17) 190 1.3 (a,y T 19l 013 4y S4 B+ B

This bound has to be carefully interpreted, Wthh we do w1th1n the proof of Lemma [£.5] below.

A formal interpolation between ) and (| would yield a W1 6( ) bound for g. We make this bound
rigorous in the following.

Lemma 4.5. The function g above satisfies the bound
(4.18) 11l 1.0y S (B + Bn)sDs.

Proof. We begin by noting that the two components g := pl 4, and gp, := —prl.a of g are nonzero on disjoint
sets Ay, respectively A, and vanish on the corresponding boundaries d.A4;,, respectively 0.A. Hence, we can
prove the bound separately for the two components. We consider g, which lives on A;, C I';,. Here
not only is I';, a Lipschitz surface, but it also has a C*2 bound of By, (which is not the case for I').

Using a standard partition of unity we can reduce the problem to the case when I';, is a graph,

Iy ={zq = ¢(a')},

where

(4.19) lollcip Sals ol .

\»—A

’2
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We denote the Lipschitz projection of Ay, by P.A;, € R~ We can equivalently consider g as a function on
PAp, in which case the bound (4.18)) becomes

(4.20) IVgllspan) Sa (B+ By)iDs.

We now summarize the information that we have on g as a function on PAy:
(i) (L? control).
2
Hg”LZ(PAh) Sa D,

which comes from (4.16]).
(ii) (Holder control).

<
1900l 3 ip g, S4 B+ B
which is a consequence of (4.15)), (4.19) and chain rule.
(iii) (Zero boundary data).
g=0 on OPA,.
We will prove that these three properties imply the desired bound (4.20). The difficulty here is that we

do not know that Vg = 0 on 9PAy; else we could simply extend g by 0 outside P.A;, and this becomes a
standard interpolation bound. Further, we do not a priori control the regularity of the boundary OPAy,.

Without any loss of generality we assume that g > 0 on P.Ay; else we split this set into connected components
where g has constant sign, modulo a set where Vg = 0 a.e. To prove the desired bound we will use a well-
chosen Vitali covering of the set S = PAy, \ {Vg = 0} with balls. This choice is as follows: For each x € S
we consider a ball B, = B(z,r,) with radius r, = ¢*(B + Bj,) ?|Vg(x)|?* where ¢ > 0 is a small universal

constant, chosen so that |Vg| is nearly constant on By, i.e.,
Vg(y) = Vg(2)| S c[Vg(a)| < [Vy(z)l, vy € Ba.

The union of the balls B, with x € S clearly covers S, so Vitali’s lemma allows us to extract a countable
disjoint subfamily of such balls B; = B, so that

sc|JsB;.

Since Vg is almost constant on B, and g(z) > 0, a key observation is that there must exist a nontrivial
sector C; C B, where

g>0 in Cy, |Cy| =~ | Bg|-

Since g = 0 on P Ay, it follows that we must have C, C S; this is what allows us to bypass the lack of
geometric information on the set P.Ay,.

On C,, the function g is almost linear with slope approximately |Vg(x)|. Therefore, we must have

lglZac,) 2 et V().
We will use this bound to estimate from above the L% norm of Vg in each 5B; as follows:

IVl Goss,) < e, Vo)l

S Ngllzec,yra) 1Vata)l*
~ [lglZ2(c,) (B + Bi)*.
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Now, we sum over j, using the disjointness of the balls B; and thus of C;. This gives

Z IV9l2s(sm,) S I9ll72(5)(B + Br)* Sa D(B+ By)*,
J

which concludes the proof of the lemma.
|

Now we use the bound in Lemma to solve the homogeneous Dirichlet problem in © and to obtain the
estimate

IV = P Yooy S (B + Ba) D3,
where * stands for the nontangential maximal function. This bound is due to Verchota [45], but see also the

further discussion by Jerison-Kenig [29, Theorem 5.6] as well as the case of C'! boundaries considered earlier
by Fabes-Jodeit-Riviere [23].

The exponent 6 is allowed above provided that the Lipschitz norm of the boundary is sufficiently small.
Precisely, the upper limit of the allowed exponents goes to infinity as the corner size decreases to 0. The
smallness of the intersection angle between I' and I'y, is a consequence of the C¢ common regularity bound

together with the use of a sufficiently refined collar region.

To use the nontangential maximal function bound, within the ball B; = B(z;, ;) we consider a smaller ball

- 1 1
Bj = B(z; — grjng, ;75)-
For y € B;j we have
\ -1
‘V(p _ph)hom(y)‘ S.z |v<p _ph)hom(z)‘7 zel'n ZB]

Taking averages on the left and integrating on the right, we arrive at
d-1/ o/ 3. |6 6
Tj |v(p7ph)hom,j| S/A ||V(p7ph);;0m”L6(f‘ﬂiBj)'
Since the balls B; are disjoint, summation in j yields

(4.21) D UV = pr)nom,s|® S (B+ Br)'D.

J
On the other hand, for v — v, we use the interpolation bound (4.8)), which gives
(4.22) [ = vl sy S (B + Br)3D3.

We are now ready to estimate the corresponding contribution to (4.11)) using also (4.13)) and (4.14]) as follows:

Tomi= 32 [ o= pullo = ol o = prdnoms | dS
j JANB;

2(d

—1) -
Sa Y oritry v =vallzecans)IV (@ = Pr)nom.j
j

d+1 -1 00
Sa Z I’ v — UhHLS(AmBj)(Tj * V(P — pr)hom,jl)
J
<Sa (B + By)D.
At the last step we have applied Holder’s inequality in j with exponents 2, 3 and 6, using (4.13)), (4.22) and
(4.21]). This completes the proof of (4.12]) and therefore the proof of Theorem
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One consequence of the difference bounds is the following uniqueness result.

Theorem 4.6 (Uniqueness). Let e > 0 and let g be a bounded domain with boundary Ty € A(Tx,€,6). Then
for Ty € Clz and divergence free vg € WH°(Qq) satisfying the Taylor sign condition, the free boundary

FEuler equations admit at most one solution (v,I';) on a time interval [0,T] with T'y € A(Ts,€,d) and

T
S L+ oo 4 || D oo 4 [Tl 41 dt < oo
OSItlgT ”UHCé+ @) /0 ”vHWI1 () [ tp”wj () | t”Calc'é o0

Proof. Suppose (v, ;) and (vp, € 1) are a pair of solutions satisfying the conditions of the theorem with the
same initial data. From the differences estimates, we immediately obtain v = vp, on ;N . Next, we argue
that the domain 2 coincides with €2 ;. First, we note that the intersection is non-empty if 6 > 0 is small
enough. We now show €, C €, 5. It suffices to show €, C ﬁt,h- If this is not true, then there is x € I'; ;, such
that « € €;. Such a point must lie on 9(Q; N 1). Therefore, from the estimate for the distance functional,
we have p(z) = 0. However, within a small enough collar neighborhood, the Taylor sign condition tells us
that the level set {p = 0} corresponds exactly to the free surface I';. This is a contradiction to x being an
interior point of €2;. Therefore €2y C €, ;. The reverse inclusion follows by an identical argument. O

5. BALANCED ELLIPTIC ESTIMATES

In this section, we prove a collection of refined elliptic estimates which will be crucial for obtaining the sharp
pointwise control norms in the higher energy bounds. These estimates will turn out to be quite general and
should be applicable to other free boundary problems. In a sense, they can be seen as significant refinements
of the so-called tame estimates which have been fundamental in the analysis of many water waves problems
(see the discussion in [6, 32]), but are not nearly sufficient for our purposes. Indeed, as we will soon see,
our proofs of the higher energy bounds require estimates for various elliptic operators which more precisely
balance the contributions of the input function and the domain regularity, simultaneously, in both pointwise
and L? based norms. This simultaneous balance cannot be achieved with the known tame estimates, which
often only seem to balance the contributions in L? based norms or involve domain dependent constants in
pointwise norms which are significantly off scale. The technical utility of our balanced estimates will become
readily apparent in Section [/} where they will be used to efficiently dispatch with expressions involving
relatively complicated iterated applications of the Dirichlet-to-Neumann operator and various other elliptic

operators.

In the following, we will always assume that € is a bounded domain with boundary I" € A, := A(T, €, 9)
for suitably small (but fixed) constants €y, d > 0. Most of the bounds in this section do not make reference
to a particular velocity function, and so, the implicit constants in many of the estimates will only depend
on the surface component of the control parameter A; namely, Ar := ||T'||c1.<o. Hence, for this section, by
the relation X <4 Y, we mean X < C(Ar)Y for some constant C' depending exclusively on Ar. The only
exception to this rule (which we will make note of explicitly) will be in Section where we will use the
full control parameter A to establish estimates for commutators of various elliptic operators with D;. We
will also harmlessly let A depend on the domain volume throughout, as the volume of the domain will be

conserved in the dynamic problem.
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Throughout the section, by a slight abuse of notation, we will follow the convention that a parameter ¢ may
vary from line to line by a fixed scalar factor. Generally speaking, we will take ¢ > 0 to be any positive

constant with € < ¢g.

5.1. Extension operators in A, and product type estimates on (). To establish the desired elliptic
estimates, it will be convenient to have an extension operator which is bounded from H*(Q)) — H*(R%) for
5 >0, and C*(Q) — C*(R9) for a suitable range of k and o with bounds depending only on the implicit
constant A. Among other things, this will enable us to recover many of the standard product type estimates
which are well-known on R%. To this end, let ¢ : R~! — R be a Lipschitz function with Lipschitz constant
M. Let Q = {(z,y) € R?: y > ¢(x)}. Moreover, for 1 < p < oo and an integer k > 0, let W**(£) denote
the usual Sobolev space consisting of distributions whose derivatives up to order k belong to LP(). It is a
classical result of Stein [44] Theorem 5’; p. 181] that there exists a linear operator £ mapping functions on
Q to functions on R? with the property that & : WkP(Q) — W#*P(R9) is well-defined and continuous for all
1 < p < oo and integers k. Moreover, the norm of £ : W*P(Q) — W*P(R?) depends only on the dimension
d, the order of differentiability k£ and the Lipschitz constant M. The operator £ is called Stein’s extension
operator. As one can see directly from its definition [44, Equation (24), p. 182], £ also maps C1(2) — C*(R9).

As explained in Section 3.3 of [44], a partition of unity argument allows one to construct an extension op-
erator £ = £q on all Lipschitz domains 2, with constant depending only on d, k, p, the number and size of
the balls needed to cover the boundary, and the Lipschitz constant of the defining function on each ball.
Since for a tight enough collar A, one can use the same balls to cover all elements of A, with control of
the Lipschitz constant on each ball, this shows that Stein’s extension operator has norm bounds that are

uniform for domains with boundary in A,.

In the above discussion, the definition of the W*P norm was the usual one, defined by requiring the first k&
weak-derivatives to be in LP. However, as noted earlier, we also define the H® norm of a function f as the
infimum of the H* norms of all possible extensions of f to R%. Clearly, | - |lw#2 < || - ||+ with constant
independent of the domain. However, by the above, for domains with boundary in A,, the reverse inequality

also holds, with implicit constant depending on Ar.

From [35, Theorem B.8] we know that for any non-empty open subset 2 of R? and any sg,s; € R we have

the identification
(H* (), H** (2))g o = H*(Q2), where s = (1 —0)so + sy and 0 <0 <1,
with equivalent norms uniform in the collar. Thus, by interpolation, we have the following result.

Proposition 5.1. Let Q be a bounded domain with boundary ' € A.. Then for every s > 0 and 0 < a <

1+ €g, Stein’s extension operator £ satisfies
[€llca@)scamay,  N1€lms(@)—sms@a) Sal
uniformly in A,.
Proof. The H® case follows from interpolation between integer powers. For C%, we first note from [35]
Theorem A.1] (and higher order variants, c.f. [24, Lemma 6.37]) that there are extension operators with

the above C* — C® bound. That Stein’s operator has this property then follows by making use of such

extensions and interpolating, similar to [34, p. 11-12]. O
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Remark 5.2. As mentioned in [29] Proposition 2.17], by an interpolation argument, one can also prove
that Stein’s extension operator maps the Besov space B24(Q) to B24(R?) for all a > 0, 1 < p,q < oo and
Lipschitz domains Q2. However, we will not require anything this precise.

5.2. Littlewood-Paley decomposition and paraproducts on (2. Using the Stein extension operator,

many of the standard paraproduct estimates on R? pass over to .

5.2.1. Littlewood-Paley decomposition. For a distribution « on R%, we will make use of the standard Littlewood-

U = ZPku,

k>0

Paley decomposition

where for k& > 0, Py corresponds to a Fourier multiplier with smooth symbol supported in the dyadic
frequency region |¢| ~ 2% and Py corresponds to a multiplier localized to the unit ball. The notation Py,
Py, P>, and Psj, will have the usual meaning. Using the Stein extension operator, we may also consider
Littlewood-Paley projections when u is defined only on 2. In this case, we abuse notation, and write Pru
instead of P&u, with corresponding definitions for Pcy, P<y, etc. We will also often write uy, u<i, etc. as

shorthand for the above operators applied to u.

5.2.2. Paraproducts on 2. The above decomposition allows us to make use of some of the standard tools
of paradifferential calculus (see e.g. [10] and [36]) on R? and apply them to functions defined on Q. For
bilinear expressions, we will make heavy use of the Littlewood-Paley trichotomy (now defined for functions
on  with suitable regularity),

where the above three terms correspond to the respective “low-high”, “high-low” and “high-high” frequency

interactions between f and g. More specifically, Tyg is defined as
Trg =Y feh—holk:
k

where kg is some universal parameter independent of k. We will be able to take, e.g., kg = 4 for most

purposes.

5.2.3. Bilinear estimates on §). One important consequence of the bounds for £ and the corresponding
inequality on R? is the following algebra property for H*(Q), s > 0,

(5.1) 1 f9ll sy Sa llfllms@llgllze ) + gl zs @ 1 fllze )

In our estimates for the elliptic problems below, the bilinear terms above will frequently appear in the form
0;f0;g where f is some function defined on R? encoding the regularity of the domain and the desired uniform
bound for ¢ is below C'. For this reason, in order to avoid negative Holder norms inside a domain, we will

need the following paraproduct type estimate, which we will use in the sequel.

Proposition 5.3 (Bilinear paraproduct type estimate on ). Let either i) s > 0 and aq, s, 8 € [0,1] or i)
$s=0, a1 =as =1 and g €[0,1]. Then we have for any r > 0,

k(

10: £0;9l s ) Sa llgllms+2-er @l fllcor @) + | fllzs+r+1(0) 2111827 rre2 =D gl ges (o)
>

(

+ | flleree 21113 gk(s+A=0) ||gl2c||H1*5(Q)7
>

where g = gt + g3 is any sequence of partitions of g in C*2(Q) + H'=A ().
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Proof. By Proposition it suffices to prove these estimates for f, g defined on R?. We prove the estimate
for 0 < aj,as < 1 and s > 0 as the other cases are more easily dealt with. We recall that for 0 < a < 1, the

C® norm on R? can be characterized by the equivalent Besov norm,
(5.2) [ullcomay = || P<oul| oo ey + sup 2% Pjul| Lo (-
We now decompose 0; f0;¢ into paraproducts, |
(5.3) 0if0;9 = T, 1059 + To,40: f +11(0; f, 0;9).
We then have the standard estimate
||T37tfajg||HS(Rd) S ”fHCO‘l(]Rd)||8jg||H3+1*a1(Rd)a

which follows by shifting 1 — «; derivatives off of the low frequency factor and onto the high frequency factor
in each term. Using the hypothesis s > 0, the high-high paraproduct may be estimated by the same term.

For the remaining low-high interaction, we write
To,g0if =Y  Pek-10;gPi0if =  Pep-10;(gh)Pu0if + Y Per—a0;(93) Pu0if.
k k k

Using standard Bernstein type inequalities and square summing, the first term on the right can be easily
controlled by

195 f | o+ may sup 27 KTV || 1| iy (ay,
k>0
while the latter can be controlled by

ok(s+B—

Hf||01w2e(m<d) sup ) Hgi|‘H1*B(R4)'
k>0

O

The following corollary of the above proposition will be used heavily in the higher energy bounds to control

product terms on ) with suitable pointwise control norms.

Corollary 5.4. Let s and oy, ay be as in Proposition . Assume that f € H*2792(Q) N C*(Q) and
g € H* 2721(Q) N C*2(Q). Then we have

10:£0;9l s ) Sa llgllmst2—er @l fllcor @) + 1 f | ot2—ez @ llgllcos @)-
Proof. This follows immediately from Proposition by taking gjz =0and r=1-— as. |

5.2.4. Generalized Moser type estimate. Next, we prove a Moser type estimate with the same flavor as
the above bilinear estimate. The main purpose of this estimate will be to suitably control (extensions of)
compositions of functions on Q with diffeomorphisms of R¢. This will be important for obtaining more

refined elliptic estimates where we need to use such diffeomorphisms to flatten the boundary.

Proposition 5.5 (Balanced Moser estimate). Let d > 1 be an integer and let G : R? — R? be a diffeomor-
phism with | DG||ce, |DG™ Y ce Sa 1. Let s > 0,7 > 0 and o, 3 € [0,1]. Then for every F € H*(R?) and
partition F = F} + F} € C*(R?) + H'=P(R?), we have

[E (G ey Sa 1l me@e + |G = Ld][gosr St>1132_j(“”_1)lle1|
J

ca(rd) +sup gi(s+h-1-¢) IFZ | gr1-6 (ma)-
§>0

Remark 5.6. The same estimate holds for F' € H*(Q)) by replacing F with its Stein extension.

Proof. The case 0 < s <1 is a consequence of the following standard fact.
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Proposition 5.7 (Theorem 3.23 of [35]). Let 0 < s < 1 and let G : R? — RY be a diffeomorphism with
|IDG| L Sal and | DG7Y||pe Sa 1. Then for every F € H*(RY), we have

IE (G s ray =a 1 F | g ra)-
Now, assume s > 1. We begin by performing a Littlewood-Paley decomposition,
IE (G e ety Sdo IF (@122 gy + Y 272 I (F(G)) 12 ey
J>Jjo
where jo > 0 is some fixed constant depending only on A, to be chosen later. We have
2°|| Py (F(G)l 2ray S 27° 1P (F<jr (G) | L2 may + 27° || Py (F> 50 (G) || 2 (rey,

where Fej := P.jyyF, F>; := F — F.j and j' := j — j; with j; being some parameter depending only on s
which will also be chosen later. For the latter term, by a change of variables and since s > 0, we have

D 2P (Foyr (G)ITeray Sa Y D 22V 2% PP T2 ey Sa 1| gay-

J>jo Jj>jo k=>j’
On the other hand, using the fundamental theorem of calculus, we obtain

(5.4) 2| Pj(Fejr (G) | L2 (ray S 27° SUOP]HPJ‘ (DF<ji(G+)P=j/G) || r2ra) + 27°|Pj (Feji (P<jr G)) || 12 (my,

T7€10,

where
G; =7P.;;G+ (1-71)G.

Now, as ||DG| ¢, |[DG e Sa 1, it follows that PojG and G, (for 7 € [0,1]) are invertible with
|P<;j DG|| L, || DG+ || Sa 1 as long as jo is large enough (depending only on A and the collar). Now, to
control the first term on the right-hand side of (5.4), we split Fj = (F}')<j 4 (F})<j and estimate (using
the estimate for G 1),

27° Sl[lopu |P; (DF<j (Gr)PsjG) || n2(ray Sa 2770 VN F camay2? || Psji Gl 2 (ray
(5.5) T,

4 9i(s=1+B=¢) prHHl_ﬁ(Rd).

Square summing (and possibly relabelling €) gives

Z 2% sup ||Pj (DF<j'(GT)PZj'G) ||2L2(]Rd) S sup 2_j(wﬂl_l)||1[7j1||ca(11w)||G — Id|| gs+r
§>do 7€[0,1] j>0
+ sup 2j(s_1+ﬂ_€)HFJZHHl*ﬁ(Rd)'
§>0
Next, we control the second term on the right-hand side of (5.4)), which is a bit easier. Let k be the largest
integer strictly less than s so that 0 < s —k < 1. If j; := j — j' is large enough (depending only on k), we

have by the chain rule and straightforward paraproduct analysis,
25| PjF o (P<jrG)||p2may Sa 27| Pj(D¥Fjr (Pejr G))| 12 ey,

where Pj is a slightly fattened Littlewood-Paley projection. We then use the fundamental theorem of calculus

to obtain

26| Py (DM Fejr (Peyr @)l 2y Sa 2707 s |125(D** Fejs (Gr) P> G) | L2 may
7€[0,1

+ 29| By (DFFyr (@) qaoy.



34 MIHAELA IFRIM, BEN PINEAU, DANIEL TATARU, AND MITCHELL A. TAYLOR

For the first term, we have simply

267K gup || Pj(DMM Foji(Gr)PsjrG) || p2(ray Sa 20671 DM E || o ray S 2779 F | s (ma)-
T€[0,1]

For the second term, we have
2N By (DFFojo ()2 (rey Sa 27C 7P IDF P jol| p2may + 1B (DY F)(G)) | ok za-

Since 0 < s — k < 1, we obtain from Proposition

> 29I PYD Fe o (Pej G)I72ay | Sa I1F Il ra),

J>Jjo
where we used that s — k < 1 to control ||(D*F)(G)||gs-xra) and that s —k > 0 to control the I? sum of
21(s=k)|| DF P | 2(ray- Combining everything together completes the proof. O

We also note a much cruder variant of the above proposition where we measure G only in pointwise norms
and F' in Sobolev based norms. This will only be needed in our construction of regularization operators later

o1.

Proposition 5.8 (Crude Moser estimate). Under the assumptions of Proposition the following bound
holds for every F € H*(R%),

IE (Gl merey Sa lFllme@ey + G = Tdl|cotrte@ay | Fll mi-r ey

Proof. The proof follows almost identical reasoning to Proposition 5.5 The only difference is that we do not
partition F in (5.5 and instead estimate

I(DF<j)(Gr)llz2(ray Sa IDF<jllregay S 277 | Fllppi-r (gay-

We then invoke Bernstein’s inequality to obtain

Cs+r+e,

20| PG| pe (rey S 279G — 1d
and conclude by summing in j. a

5.3. Local coordinate parameterizations and Sobolev norms in A,. With the above estimates in
hand, we can begin the process of proving refined versions of the various elliptic, trace and product type
estimates on I' that will be important for establishing our higher energy estimates. Our goal in this subsection
is to construct a family of coordinate neighborhoods for I', which will act as a “universal” set of coordinate
neighborhoods which we can use to flatten the boundary of nearby hypersurfaces I' € A,. We will also use
these local coordinates to define Sobolev type norms on I" which are suitable for proving uniform estimates
later in this section. To achieve this, we slightly modify the construction from [4I, Appendix A] (but note
the difference in our definitions of A.).

5.3.1. Local coordinates and partition of unity. As in [41l, Appendix A], since I', is compact, for any o > 0
we can choose z; € R and r,r; € (0, %], it =1,...,m, such that we have the following two properties:

(i) B(Ts,r) C U™, R;(r;), where B(S, €) denotes the e neighborhood of S and R;(-) := R;(-)x I;(-) € R¢

is a rotated cylinder with perpendicular vertical segment centered at z; with the given equal radius

and length.
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(ii) For each i, z = (Z,z4) being the natural Euclidean coordinates on R;, there exists a function

fwi 2 Ri(2r;) — I; such that
(5.6) [ feillco < oriy |IDfeillco < o and Q. N R;(2r;) = {zq > fui(2)}.

When § > 0 is small enough, for every I' € A, with corresponding bounded domain 2, holds with T,
replaced by I'. Moreover, there exist functions f; : Ri@h‘) — I; satisfying with €, replaced by € such
that we can control the Sobolev and Holder type norms of f; by the corresponding norms of I'. Specifically,
we have
Vfillme Sa 140000, illore Sa 1+ [Dlose

for s > 0, integer k¥ > 0 and « € [0,1). Indeed, by performing a computation in local coordinates, the
above Sobolev bound follows from the Moser estimate in Proposition [5.5] and the pointwise bound can be
verified directly from the chain rule and interpolation. Using these coordinate representations, we intend to
construct local coordinate maps on each R;(2r;) for Q which flatten I' and have uniform estimates in A,.
In some of the estimates in this section, by a slight abuse of notation, we write ||T'|| when we really mean

14 ||IT|| in order to declutter the notation. This will not affect any of the analysis for the dynamic problem.

On each R;(2r;), let ¢; = ~ifi, where v;(3) = 7(?) and 7 : [0,00) — [0,1] is a smooth cutoff sup-

3 5
2 4
regularity in H* norms and is bounded in suitable pointwise norms. Indeed, let Z € R and s > % We

ported on [0, 2] and equal to 1 on [0, 2]. We can extend ¢; to a function on R? which gains half a degree of

define an extension ®; of ¢; by
D;(2) = / gz/S\,'(5’)67(1H5/‘Q)ZZeQWiél'gdf’ for z = (%, 24) € R%
Rd—1

We first observe that for each integer £ > 0 and o € [0,1), ||®il[ck.om@e) Ska l|Pillorema-1). One also
has the same bounds for W% for each k > 0. To see this, we observe that ®; can be rewritten as the

convolution

D;(2) = cde*zg oi(Z + zdy)eflyﬁdy,
Rd—1
where ¢4 is a dimensional constant. In this form, the above bounds are easily checked. We also have
Hq)i”Her%(]Rd) ~s ||6ill s (ra-1) for every s > 0, which follows from inspecting the Fourier transform of ®;, in
a similar fashion as [35, Lemma 3.36].

From the above, we see that if o > 0 from (5.6 is small enough, then the map
Hi(Z,zq) = (2,24 + ©;(Z,24))

is a diffeomorphism from R? — R with ||H; — Id||cr.a Sa |T|lcke and |H; — Id vy Sa IT|| grs for s >0,
integer £ > 0 and « € [0, 1). Moreover, for the inverse function G; := H[l, the same bounds hold for G; — Id
_1|

and its d'th component g; satisfies the bounds [9,,¢:| + [(9.,9:) '] Sa 1. Finally, if ¢ > 0 is small enough

and A, is a tight enough collar neighborhood we have, in the C' topology,
[H; — Idllcr + [|Gi — Id][cr Sa ps

where p > 0 is some positive constant which can be made as small as we like (depending on ¢ and A,). We

then have for some uniform 4, > 0,

(i () s (25 o= (i () s (25 ) -0
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Partition of unity. Here, we construct a partition of unity for  with bounds uniform in A,. We follow

essentially the procedure from [41, Appendix A]. Let v be a smooth cutoff defined on [0,00) satisfying
5 9
)’ 4 '8

on [0, 00) taking values in [, 00) with ¢ = % on [0, 5] and ((¢) = z for > 2. Define

0 <~ < 1 with 7 supported in [0, 2) and equal to 1 on [0, 2]. Moreover, let { be a smooth function defined

Jule) =2

T 6* T

M), a= (oY oG

We then define a partition of unity via

N*i G'L'
(57) Vi = ’Y'(,]), Vx0 = (1 - Zry*i)]lﬂ'

‘We see that Zi>0 Vi = 1on Q and 0 < ~,; <1 for each i > 0. Moreover, by the Moser and Sobolev product
estimates, we have

[ysill fyor s Sa TNz
for s > 0.
5.3.2. Sobolev spaces on hypersurfaces in A,. We can use the above partition of unity to define C** and H*

spaces on hypersurfaces I' € A,. Indeed, if T' is C* and in H*, we may define what it means to be in H"(T")
for 0 < r < s through the inner product,

(f,9)mrry == Z<¢ifi7¢igi>H7‘(Rd*1)a

i>1

where ¢; 1= . 0 H;(Z,0) (note that this is not the same ¢; as in the previous subsection), f; := f o H;(Z,0)
and g; := go H;(%,0). If T is C** we may also define

| fllgrery = sup pi fill oroo (ma—1)-

Finally, for a function v defined on Q, we write v; = y,;v and w; = v;(H;).
Using the above and the full generality afforded by Proposition [5.5] we prove a refined product type estimate
on the boundary I'. Precisely, we have the following.

Proposition 5.9 (Product estimates on the boundary). Let Q be a bounded domain with boundary T’ € A,.

If f,g are functions on I and g = gjl- + gj2- s any sequence of partitions, then for s >0 and r > 1 we have
”ngHS(F) Sa ||fHL°°(F)||g||H~‘(I‘) + (Hf||Hs+rfl(1“) + ||f\|Lw(F)||F||Hs+T)Sl>IIg 2_j(r_l)||gj1'||L°°(F)
J

+ (14 [|fllc2ery) sup 277167 | L2 1y
j>0
Remark 5.10. If we take » = 1 and gjl- = g, we recover something resembling the standard algebra property,

(5.8) 1 fgllzsry Sa llfllzes@yllgllzoe ) IT a1 + 1 fll s llgll Lo 0y + gl s )L f Il oo () 5

but with the twist being the additional explicit presence of the H**! norm of the surface on the right-hand
side. We also remark that the proof below will allow for the first term on the right of (5.8) to be replaced
by (| fllwree @9l zoe )y + 1| ooy llgllwre () I || 7+, which is perhaps more natural, but we will never
actually need this.
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Proof. Let (74;); be the partition of unity for  defined in (5.7). As before, we write ¢;(Z) := v (Hi(2,0)),
which is smooth with domain independent bounds since GG; and H; are inverse. Similarly, we write f; =
f(H;(2,0)) and g; = g(H;(Z,0)), which are functions defined on the support of ¢;. By definition, it suffices
to control ||¢; figillgr=(ra-1y for each i > 1. To begin with, let j* = j — 4 and let P; and Pj; denote
Littlewood-Paley projections on R?~!. Moreover, define (51 to be a smooth compactly supported function
equal to 1 on the support of v,; with support properties chosen so that ¢~>1 is supported in the region where

fi is well-defined. Then a simple paraproduct estimate using the Littlewood-Paley trichotomy gives

2

p: figill s ma—1y Sa lfllzee ) Pigill e ma-1) + Z22js||P<j’(¢igi)Pj(fiéi)H%?(Rd*l)
j7>0

For the latter term in the above, we estimate

Z 22jsHP<J"(¢igi)Pj(fiq~5i)H%2(Rd*1) Sa ”fi(gi”HS*"*l(]Rd*l) S]i% Q_j(r—1)|‘gjl- | Lo ()
>0 J

+ (14 (| fllc2ery) sup 277 |67 | L2 (ry.-
§>0
We are then reduced to showing

| fiill grovr—1ra-1y Sa lflassr—ray + |1 Fll oo @y T | preer-

For this, we note that

Hfi(l;i||H5+T*1(]Rd*1) < Z ||€51"Y*j(Hi(ga0)).fiHH5+T*1(]Rd*1)~

Jj=1

Let us write ¢;; := G o H;. Then we have

[Givsj (H;(2,0)) fill grosr—1 a1y = |[(85 £:) (@35 (2, 0)) il ror—1(a-1).-

We note that ¢;; is a diffcomorphism having the same bounds as G; and H;. By using the extension
® from earlier, we may assume that ¢;f; is defined on R? with ”¢jfjHHS+T—%(Rd) S i fill str—1(ma—1y
and [|¢; fillpeme) S ¢ fjllLes@®e-1). Therefore, by the trace estimate on RY=1) the fact that ¢;; is a
diffeomorphism and the balanced Moser estimate, we have
19:(65 £5) (i (2, Ol s r-1ma-1) Sa l(@555) © @il frosr g gay Sa 05 fill mosr—sma=sy + 1Tl rosr [l £l oo ry-
Since, by definition, we have

165 fill rrsvr—r@a-1y < | fllmesr—2(r),

the proof is complete. O
5.3.3. Trace estimates. Now, we prove a refined version of the trace theorem for T'.

Proposition 5.11 (Balanced trace estimate). Let Q be a bounded domain with boundary T € A.. For every

s> %

5,7 >0, a,8¢€(0,1] and every sequence of partitions v = vjl- + ’UJQ-, we have

loell o1 oy Sa lvlla=@) + 1Tl oy sup 2770 D 1o | ca @) + sup 27T 02| s .
) 7>0 7>0
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Proof. For i > 1, define v; = v,;Ev where &£ is the Stein extension operator for 2. It suffices to prove the
estimate with the left-hand side replaced by ||0;(H;(Z,0))

have

”HS*%(RH)' Using the trace theorem on R?~!, we
H’Di(Hi(270))||Hs—%(Rd,_1) 5 HaiHHs(Rd)a

where %; := ¥; o H;. We then use Proposition and the operator bounds for £ in Proposition to

conclude. a

5.3.4. An extension operator depending continuously on the domain. Another use of the above local coor-
dinates is to construct a family of extension operators which depend continuously in a suitable sense on
the domain. This will be important for establishing our continuous dependence result later on. Poten-
tially, something akin to the Stein extension operator could work here, but we opt for the following simpler

construction where the dependence on the domain is more transparent.

Proposition 5.12. Fiz a collar neighborhood A, and let s > % + 1. For each bounded domain ) with H*®
boundary T' € A, there exists an extension operator Eq : H*(Q) — H*(R?) such that for all v € H*(Q),

(5.9) [Eavll e ®ay + ITllas =ao) o @Dl [Eovllgs@e Sa Tl .3 vl
Cc2(0) H

where the dependence on ||v|| is polynomial. Moreover, if Q,, is a sequence of domains with I';, — T" in

c3(Q)
H?, then for every v € H*(R?), there holds
(5.10) ||EQ”U‘QTL — EQU‘Q”HS(]R(Z) — 0.

Remark 5.13. One can loosely think of (5.10) as a strong operator topology convergence for this family of

extensions.

Proof. Given a family of domains ,, and 2 with boundaries I',,I" € A,, denote by v}, and ~,; the corre-
sponding partitions of unity, so that

v = Z%Z‘U on Q, and v = Z*y*iv on Q.
i i

Define ul’ = (yv)o H on R‘i. Let k be the largest integer less than or equal to s, and define the half-space

extension
(2, 20) = Y50y cjul(5,—2) if 24 <0,
Ul (Z, zqg) = ul(Z, 2q) if zg >0,
where ¢, ..., cxy1 are gotten as in 24, Lemma 6.37] by solving an appropriate Vandermonde system. It is

standard to verify that we have a7 € H*(R%).

We define the €, extension of v by
U =Y i oGy,
i
and similarly let © by the Q extension of v. To verify the continuous dependence property, we want to verify
that if I',, — ' in H*, then ¥, — o in H*(R%). For this, it suffices to prove that @ o G} — @; 0 G; in H*(RY)
for each i. We note that

(511) ||1~L:L ] G;L - ’&i o GZ”HS(Rd) S ||(ﬂ? — 17,1) o G:LHHs(Rd) + ||ﬂ'z o G:L - ﬂi [©] GZ||H§(R{1)

The first term on the right-hand side of (5.11]) can be shown to go to zero by using standard Moser estimates.

The latter term goes to zero by arguing similarly to the proof that translation is continuous in LP spaces
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(using a simple density argument to replace @; by a smooth function).

Finally, the bounds (5.9)) follow from the definition of the extension and Proposition
O

5.4. Pointwise elliptic estimates. Here we establish variants of the C%% and C'® estimates for the

Dirichlet problem which adequately track the dependence on the domain regularity. In our analysis later,

we will mostly use the C1* estimates with o = % or a = €. However, the C%“ estimates will be relevant for

proving bounds for our regularization operators, which are defined in Section [6}

As will become apparent later, to obtain the desired pointwise elliptic estimates, it is crucial to use a domain
flattening map whose Jacobian has determinant 1. This will be especially necessary for the C1'* estimate,
as we must preserve the divergence form of the equation. For this reason, instead of the map H;, we will use
the more familiar domain flattening map

(5.12) Fi(2) = (2, zq + ¢4(%)),

whose Jacobian has determinant 1. The tradeoff when using the flattening F; is that it does not exhibit a
% gain in regularity for the H® norm on the interior compared to the boundary, but this will not matter for
this section because all domain dependent coefficients will be placed in L*° based norms. We let ¥, := F’ Z-_l,
and begin with the C% estimates.

Proposition 5.14 (C%< estimates for the inhomogeneous Dirichlet problem). Let 0 < o < 1 and let Q be

a bounded domain with boundary T' € A, having C*% reqularity. Consider the boundary value problem
Av=g in,
v=1 onl.
Then v satisfies the estimate
[vlcza@) Sa Illlczellvlwie@) + lglloa@) + 1¥]lcz.ar)-

Proof. We write v; = 740, h; = Av;, f; = h; o F; and v; = u; o ¥;. Omitting some of the subscripts for
notational convenience, we see that u := u; satisfies the equation

Au = 0y ((07% — a?*)0ju) + f,
u\zd:(, = (7*i¢)(Hi(270))a

where a/* = (W4 Wk )(F;) with repeated indices summed over. Note that to compute the boundary term in
(5.13) we used that F;(2,0) = H;(Z,0). By the well-known Schauder estimates for the half-space, we obtain

(5.14) ullcze Sa (6% = a?)ojullcre + (| floe + |(vith) (Hi(Z,0)) | c2.e-
Using the Besov characterization (5.2]) and the paradifferential expansion (5.3]), it is straightforward to

estimate

(5.13)

(5.15) 1(67% — a”*)8jullcre S (167% — a7¥]|c

ul[cze + [Tz l[vllwie(q).-
As a¥ is close to the identity in C¢, this simplifies the estimate (5.14) to

(5.16) [ullcz.e Sa [[Tllczellvllwre @) + [ flloe + (7)) (Hi(Z,0)) | g2
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Clearly, we have || f||ce Sa ||h]lce(q). On the other hand, we have
(5.17) [u(@o) e Sa I(DW)*(D?u) (V) DVl o + [|(Du) (W) D* i o
We can estimate both terms above by the right-hand side of (5.16). We show how to do this for the first

term, as the second term is similar. For this, we may assume that u is defined on all of R? by using a suitable
extension operator from the half-space to R?. Then we write as usual U<; to mean Poju and u>; 1= u—u<;.

By the Besov characterization of C“, we need to estimate

sup 29| Py ((D:)"(D*u) (W) DY )| oo

7>
By the standard Littlewood-Paley trichotomy, we first obtain,

2| Py (DY) (D?u)(¥:) D)) || o= Sa [[ulleze + 27| D?ul| oo || P B(DWy, D5 )| o<,
where B is a suitable bilinear form. For the latter term, we split v = u<;+u>; and estimate using Bernstein’s
inequality,
29%|| D?u| oo | Py B(DW3, DW;)|| 1o Sa [[v]lwr oo () 27| Py B(DWs, DY) || oo + [Jul| 020
Sa Tllezelvllwr @) + [lullcz.o.
The other term in ([5.17) is similarly handled. Combining the above, we obtain
[villc2.e(0) Sa ICllczelvllwe @) + [[hllce@) + (1) (Hi(Z,0)) | 2o
Expanding
h = A7) = Ayy0 4+ 2V - VU + v Av
we obtain
[hllce@) Sa ITllezallvllwe@) + [VYsi - Vollca) + llglloa(o)-
The second term on the right-hand side can be estimated crudely by
[VYsi - Vllco) Sa vllera@) + Tz lv]lw= o)

Finally, by estimating the term [[v||c1.a () S dol|v]|c2.a(q) + C(d0)||v]|co(q) for some &y sufficiently small and
absorbing the first term into the left-hand side of the estimate, we conclude the proof. |

By very similar reasoning and the corresponding estimate in the half-space (see Theorem 8.33 in [24]) we

also have a O variant if the source term ¢ is replaced by V - g. More precisely, we have the following.

Proposition 5.15 (C1'® estimates for the Dirichlet problem). Let Q be a bounded C** domain with 0 <
a < 1 and with boundary T € A,. Consider the boundary value problem

Av=V-g1+g2 inQ,
v =1 on 0f2.
Then v satisfies the estimate
[vllcra@) Sa Il lore ([vlwiee @) + g1l Lo (@) + lg1llca@) + |92l @) + [¥llora ).
Interpolating and using the straightforward estimate
[ollz= (@) Sa lgillee@) + llg2llz= (@) + ¥l (),

we deduce also

(5.18) [vllere) Sa llgillce@) + 192l @) + [[¥llcremr)
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and

[vllcra) Sa ITllcre(lgtllee@) + lg2lln= @) + [[¥llcremy) + lgillca@) + 92l @) + 1Y llcra(ry-

Proof. Much of the proof is similar to the C%® estimate. We only outline the slight changes. First, we note
that

Av; = 0;(0j74iv) + 0j74:05v + V4V - g1 + Yeig2
= 0j(0j74iv) + V- (1xig1) + 075050 — Vi - g1 + Yaige =1 V - by + ha.
Hence, localizing with ~,; preserves the divergence source term to leading order. More precisely, ho will
be suitable for estimating in L in the sense that [|haze Sa |[v]lwiee) + 191l 2o @) + |92l L (). The
next step is to perform the domain flattening procedure. The most important point here is that since the
Jacobian determinant of F; is 1, the corresponding equation for u (using the notation from the proof of
Proposition [5.14]) becomes
8k(ajk8ju) =V. ill + }NLQ in Q,
U|zq=0 = (7%i®)(Hi(Z,0))  on 09,

where

iLl = (hl . D\:[/l)(Fi), BQ = hQ(Fl)

In other words, the divergence structure of the equation is preserved. From this point, the proof follows the
same line of reasoning as the C%< estimates by writing an equation for Au. The difference is that we use
the C™ norm and the corresponding estimate for the Laplace equation in the half-space when the equation

has the above divergence form. O

When g; and g, are zero in the above proposition, we can interpolate using the maximum principle for H
and the C1:¢ bound above to obtain C® bounds for the harmonic extension with constant depending only
on AF.

Corollary 5.16. Let 0 < a < 1. The following low reqularity bound for H holds uniformly for domains 2
with boundary T' € A,

[Hglloa(@) Sa llgllcem)-

Proof. By the above and the maximum principle, we have C1¢(T") — C1¢(Q) and C°(T") — C°(Q2) bounds
for H that are uniform in A.. By [34, Example 5.15] we also know that (C°(R"), C*¢(R"))p . = C*(R™)
for an appropriate choice of 6. Therefore, we just have to transfer the interpolation properties on R" for
n=dand n =d—1to Q and I, respectively, with constants uniform in the collar. For ), we argue as
in Proposition 5.1 and on I' we simply unravel the definition of our function spaces via the partition of

unity. (|

Remark 5.17. Of course, we note that Corollary avoids C'! and Lipschitz regularity, as these do not

fall into the interpolation scale.

5.5. L? based balanced elliptic estimates. In this subsection, we will prove H*® type estimates for
various elliptic problems. In the following analysis, we will always be using the coordinate maps H; and G;
(as opposed to F; and ¥; from the pointwise estimates) to flatten the boundary since we will now need the

% gain of regularity on 2 in H® based norms given by this flattening.
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5.5.1. The Dirichlet problem. We begin our analysis by proving estimates for the inhomogeneous Dirichlet
problem
Av=g in ),
v=1 onl.
We first recall two baseline estimates which will be used heavily in the derivation of the higher regularity

bounds below. The first is when 1 = 0, in which case v satisfies the H' estimate

(5.19) [oll o) Sa llglla-1@)-
On the other hand, for % < s<1and g=0, we have

(5.20) [l ) Sa 1l gomy -

The bound (5.19) is completely standard. The bound (5.20) was established by Jerison and Kenig in [29],

and even holds, in an appropriate sense, at the endpoint s = % For our purposes, we will only need the
range % < s <1, but we do need to quantify the dependence of the implicit constant in [29] on the domain.
As noted in [48], the implicit domain dependent constant is, as expected, solely dependent on the Lipschitz
character of Q, so is controlled uniformly in the collar. Formally, [48] only quantifies the domain dependence
for the inhomogeneous problem g # 0, ¢y = 0, but the analogous homogeneous estimate follows immediately
from this and the existence of an extension operator E : H*~2(T') — H*(Q) for 3 < s < 1 with norm
uniform in A,. In this low regularity range of s, such an operator can be constructed by using the partition

of unity for €2 and the construction in [4I]. We omit the details.

In a small number of places in the higher energy bounds, the following elliptic estimates which hold on !+

(but not quite Lipschitz) domains will be convenient for simplifying the analysis.
Proposition 5.18. For every 0 < s < % + €g, there holds

1A  gllzsri) Sallgllas-1@)y  [HGgor10) Sa 1l o+ 1y

Proposition is well-known to specialists; see, e.g., [40]. We remark that bounds of this type hold in

the range s < % when the domain is Lipschitz; the excess regularity given by a C10 domain is required to

extend the range to s < % + €o.

Next, we move to the higher regularity estimates for the Dirichlet problem.

Proposition 5.19 (Higher regularity bounds for the inhomogeneous Dirichlet problem). Let 2 be a bounded
domain with boundary I' € A.. Suppose that v solves the Dirichlet problem

Av=g inQQ,
v=1 on JQ,
and let s > 2. Then for r >0, a € [0,1], 5 € [0,1] and any sequence of partitions v := vjl» + 1)]2», we have

2

lvllas ) Sa lglla—2@) + ||¢||H3,1 ) + ||F||H5+r7% »;{1>1](;)>2_j(“_1+’”)||v;||cam) + jli]g 2j(s_1+ﬂ_€)HU?HHI—B(Q).

Proof. Using the partition of unity, it suffices to estimate v; := ~y,;v for each ¢ > 0. Since the case i = 0 is

essentially an interior regularity estimate, we focus on the case i > 1. We define

h = Av; = gvui + VAV +2V0 - Vi,
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Using the map H; = G 1 we can write a variable coefficient equation for u := v; o H;,
—Au = (a¥ — §)0;0;u + b;Oju — f,
ul{zy=0y = (i) (Hi(Z,0)).
Here (dropping the 4 index from the partition and now using it as a dummy index), we wrote a!™ :=

(Gfth;'L) o H (where k is summed over), b; := (AG7) o H and f = ho H. As a first step, we prove the

following estimate for u:
(5.21)

ul|lgs Sa oo [l ot AT ez sup 277 @D 1Y o o + sup 27
] I £l ¥l , 1IN e 5 Sup i llce ) sup

L (s—14+8—
2(I)

€)||U]2‘||H1—/3(Q)-
For this, we use the standard elliptic regularity for the half-space to obtain
(5-22) Nlullr Sa llullze + |1 fllze-2 + [1bidiul| o2 + [[(a¥ = 6)0,05u o2 + [| (vt (Hi(Z, 0))

By definition, the last term on the right-hand side is controlled by |\1/)||Hs,%(r)
variables and the baseline estimates ([5.19)) and (5.20]), we can control, crudely,

(5:23)  lullzz Sa llvillzzce) Sa llhllzz@) + 190y 1y Sa lfllee + 1015 ) Sa I w2 + 191 oy

||HS—% (Rd—l)'

. Moreover, by a change of

@)
For the purpose of estimating the third and fourth terms on the right-hand side, we may assume that
u € H*(R?) with compact support instead of just v € H*(R%) by using any suitable extension for the

half-space. We then recall that in a suitably refined collar, we have

lla® — 67 ||p + |DG — I||p~ <4 1.
Next, we define a partition of u as follows: First write v; = 'y*ivjl» + ’y*ivjz- and then u = v; o H; = (W*iv}) o
H; + (v4iv3) o Hy =: uj + u3. To prove , it suffices now by interpolation and the above estimates to
prove the estimate

(5.24) 0:0su| -2 + |(@ — 6)0;05ul| grs—2 Sa |[ullgro-e + [|DG — I||p||ul = + RHS(5.21)).

We show the details for b;0;u since it is the more difficult of the two terms to deal with (as it involves two
derivatives applied to the domain flattening map) and because the estimate for (a*/ — §%)9;9;u follows from

a similar analysis. Our first aim is to establish the bound

(5.25) b303ul| go—z <a [(VU)(G) - AG||ggo—2 + RHS(5.24),

which, to leading order, is essentially like doing an H*~2 “change of variables”. This bound follows imme-
diately from Proposition for 2 < s < 3, so we restrict to s > 3. To simplify notation a bit, we write
w := b;0;u. We begin by applying Proposition [5.5 to obtain

(5:26)  |lwllge— Sa [(Vu)(G) - AG| == + [T 3 SUIf‘““”HIU%HLw +sup 2107279 w2,
7> >

Hs+r—
J

where w = wjl» + wjz is a well-chosen partition which needs to be picked so that we can estimate the latter
two terms above by RHS(5.24]). We take

wj = (AP<;G - (VP<jui)(G))(H),
w} = (AP<;G - (VP<ju3)(G) + AP<;G - (VP5;u)(G) + AP>;G - (Vu)(G))(H).
It is then easily verified using the above and (5.26)) that we have
wllge—2 Sa [[(Vu)(G) - AG| o2 + sup 227279 APs,;G - (Vu)(G)]| > + RHS(5.24).
Jj>0
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To estimate the latter term on the right, we use that s — 2 — ¢ > 0 to estimate

229 AP G - (Vu)(G) e < sup 202 ARG - (Vu)(G) | 2.

Then splitting u = P<lull + (P<lul2 + leu), a change of variables and a simple application of the Bernstein
inequalities allows us to control the above term by the right-hand side of . This establishes for
s > 3. Finally, for each s > 2, it remains to estimate ||(Vu)(G)AG| gs-2 by the right-hand side of (5.24).
From a simple paradifferential analysis as in Proposition we have

|(Vu)(G) - A z:-2 Sa [(Tu)(@) i1« + [ T(vuy ) AG | 11—
<4 [(Vu)(G)17e-1- + RHSE2A),

where, above, to estimate the latter term in the first line, we estimated each summand P.;_4(Vu(GQ))P;AG
in the paradifferential expansion of T(v.)¢)AG using the partition u = P<ju} + (P<ju? —|—P2ju) and

Bernstein’s inequality. Then, using Proposition [5.5] and this same partition, we have easily

[(Vu)(G)||s-1-< Sa RHS(5.24)).

This establishes the bound for b;0;u. The bound for (a® — §* )0;0;u follows similar reasoning, but is
easier because it involves only one derivative applied to the domain flattening map, and therefore the initial
change of variables performed above is not needed. This concludes the estimate . Our next step is
replace u on the left-hand side of with v; and replace f on the right-hand side with g. Recall first
that v; = uo G; and f = h o H;. We may assume that v; and u are defined on R? using Stein’s extension or
a suitable half-space extension in the case of u. Therefore, using the partition u = u; + u? as defined earlier

and Proposition [5.5| we obtain

(=147

lvill =) Sa llullgs + I orry sup 27 NwHlce) + sup 27129102 a5 (),
7> 7>

where we used that |G — Id|| s+ <a ||FHHS+T_%.

To conclude we now need only show that

(5.27)

1712 S gl +IT] vy sup 271
7>

—1+ 1
. a r)HUj

HC’O“(Q)‘Fsup2j(S+B_1_€)HUJQ‘HHl—ﬁ(Q)'i'SUp||'Ui||HS*€(Q)~
3>0 i
Expanding out h = A(v7.;) and using again a paradifferential expansion similar to Proposition the

identity ¢g := Aw and the splitting v = vjl- + ’UJQ- we observe first that
Al s—20) Sa ||g||H5*2(Q)+HF||H3+r7% Slilg Q_j(a_“rr)||U}||Ca(sz)+sl>llg 2j(s+5_1_6)||vJ2»||H17B(Q)+sqp il frs—< (02)-
J J i

Therefore, we need to only show (5.27) with g replaced by h. For this, we first extend h to a function
h = EA(74v) on R using Stein’s extension. Then, using the partition h = h; + h? with h} =EAP (vjl»'y*i)
and h? = EAP, (vf-v*i) + EAP>j(v74i) together with Proposition we obtain 1D and conclude the
proof. O

We also note a much cruder variant of the above estimate which will be useful for constructing regularization
operators later on. As with the corresponding Moser bound in Proposition the proposition below could

be optimized considerably, but such optimizations will not be needed in this article.
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Proposition 5.20 (Cruder variant of the Dirichlet estimates). Let T', v, ¥, g and s > 2 be as in Proposi-

tion[5.19, and assume that v» = 0. Then for every § > 0, we have the estimate

[0l =) Sas lgllme—20) + ITllgs+s [0l 1 o)

Proof. We only give a sketch of the proof since it is essentially a much simpler version of Proposition[5.19] One
starts by using the cruder flattening as in the pointwise elliptic estimates and writing the corresponding
equation for u (using the notation in ) This flattening is a bit more convenient for this estimate because
the source terms in are simpler. Moreover, we will only need to measure I' in pointwise norms, and
therefore will not need the % gain of regularity from the flattening in Proposition As in the proof of
Proposition we then obtain the preliminary bound

lull e Sa l1F1le-2 + 11(67% — a?*)jull o1
Using simple paraproduct type estimates and a change of variables, it is straightforward to then estimate
(5.28) [ullers Sas 1f -2 + [ITllcsrs [0l 1 o)
Then, to conclude, one estimates using Proposition [5.8 with » = 0 and r = 2,
[oill s Sas lullzs + ITllessllvllar@y,  1fllm-2 Sa llPla-2@) + [Tlles+s vl @),
and then performs a simple paraproduct analysis to finally estimate
Ihllra=2(0) Sa lgllme-2(0) + [ITllce+s 10l 1) + 0]l =< ()-

Combining the above and interpolating finishes the proof. O

5.5.2. Harmonic extension bounds. By taking g = 0 in Proposition we obtain the following corollary

for the harmonic extension operator H.

Proposition 5.21 (Harmonic extension bounds). Let 2 be a bounded domain with boundary I' € A.. Then
the following bound holds for the harmonic extension operator H when s > 2, r >0, 8 € [0, %) and o € [0, 1),

<
[HY | () Sa ||1/J||HS,% o

r 9—i(a=1+4r) 11y i (s=14B=€) |[,)2 .
Sl (1| SO sup [¥jlleer) + sup 1950 3 -5 1y
Here, ¢ = 1/}}- + 1/}?- s any sequence of partitions.

Proof. First, Proposition [5.19 yields the estimate

) < —j(a—14r) 1 j(s—1—¢) 2
Hbllrrs0) Sa 9l amg gy TN ey 31;132 165l ce ) +§1>1]82 1651l (2

where ¢ = P;H1p; and ¢7 = P<jH1p? + P>;H1p. From the C* bounds for # in Corollary (which hold
only for a € [0,1)), we have [[¢} [ ce() < [[¥]llcer)- On the other hand, from (5.20)), we obtain
J(s—1—¢€) || 42 < J(s—=1+B—€) ||,/,2
?2%2 16711z () Sa IHY | mo-< (o) + §1>1182 1951 13- -

The proof then concludes by interpolation and again ([5.20]). O
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5.5.3. Curvature estimate. With the above local coordinates, we can control the surface regularity in terms
of the mean curvature. The following estimate is a slight refinement of Lemma 4.7 as well as Propositions
A2 and A.3 in [41].

Proposition 5.22 (Curvature estimate). Let s > 2. The following estimates for |T'||gs and the normal ny
hold:

I s + ol g1y Sa 14 |6l ge—2r).

Proof. We only sketch the details as the proof is similar to [4I]. As in their proof, let {f; € H*(R;(2r;))}
be the local coordinate functions associated to I' defined earlier. Let 7 : [0,00) — [0, 1] be a smooth cutoff
function supported on [0, 3] with v =1 on [0, 2]. On each R;(2r;), we let

12l

i(2) =), ri(2) = % (2)R(Z, fi(2)), 9i = ifi-

ri
Using the mean curvature formula

. 9 f
K(Z, f(2)) = —0;(—==

VIV

we obtain the following elliptic equation for g;:

Af n 0 for fOji f

R T RN TR

g 1+ [Vfi]?) a9 + (L+ [V Sil*) 2k Vi f. Y f
8‘1fia'zfi
+ W(ajljmﬁ + 05,705, fi + 05,705, fi)-

As ||Dfillre < 1 the first term on the right-hand side can be viewed perturbatively. A paradifferential type
analysis similar to the estimate for u in Proposition together with standard Moser and product type

estimates then gives
lgillzrs S Sllgillers + 1Fillzre—e + Il ooy
for some 6 > 0 small enough (depending on A,). We then obtain
lgillms Sallfillms—c + 16l g2,
and so, we obtain,
sup 1 fill e Sa L+ |6l a2y,

which completes the proof. O

5.5.4. Estimates for the Dirichlet-to-Neumann operator. Here, we use the above estimates to prove refined
bounds for the Dirichlet-to-Neumann operator which is defined by N := nr - (VH)r. We begin with the

following baseline ellipticity estimate.
Lemma 5.23. The Dirichlet-to-Neumann map on I' satisfies
[l ey Sa Nl L2y + 191 2 r)-

Proof. Let v ="Hy. We begin by proving the standard estimate

(5.20) / (V028 Sa NG + [l 10l .



WELL-POSEDNESS FOR THE INCOMPRESSIBLE FREE BOUNDARY EULER EQUATIONS 47

Let X be a smooth vector field on R¢ which is uniformly transversal to all hypersurfaces in A,. That is,
X -nr2aland|DX| <4 1. Integration by parts then gives

/|Vv|2dS 5A/nF-X|Vu|2dS
r r
Sa Vo2 +2/ X;0;Vv - Vo dx
Q
<a V0l —|—2/(X~Vv)/\/z/)d5.
r

For the first term, we have from the H 3 — H! harmonic extension bound and straightforward interpolation,

lolE @) Sa I¥12,,

2 ey 54 N2y lms oy

Combining this with the Cauchy Schwarz inequality for the second term, we obtain ([5.29)). Using the partition
of unity (7u;)q, it straightforward to then estimate

[y Sa llllzeey + IV 0llzey Sa lléllze) + 1Vl 22y,

where VT denotes the projection of V onto the tangent space of I'. Combining this with (5.29) and Cauchy
Schwarz concludes the proof. O

We will also need the reverse inequality.

Lemma 5.24. The Dirichlet-to-Neumann map on I' satisfies
INY|l 2y Sa 19l e @)

Proof. Using the same notation as in the above lemma and essentially the same argument, we have the
estimate

/(X-np)|vw|2ds+/(x-np)wm?dsz /(X~np)\Vv|2dS
r r I

> Ol oy + 2/(X V)N dS
r
for some constant C' depending only on A. Writing X ' := X — (X - np)nr, we obtain

[ noW P dS < ol + [ a0V TuPas -2 [ X7 vevpas,
r r r
which by Cauchy Schwarz completes the proof. O

Next, we prove higher regularity versions of these bounds. The first bound below amounts essentially to

elliptic regularity estimates for the Neumann boundary value problem.

Proposition 5.25 (Ellipticity for the Dirichlet-to-Neumann operator I). Lets > 3, a € [0,1) and 8 € [0, 3).
Then we have

(5.30)

1oy Sa l¥llz2y + INGl o1y + [Tl zzesr sup 277D [ || a(ry + sup 2“8*6_%_6)waHH%fﬁ(F)-

j>0 j>0

Proof. The proof of this is very similar to the Dirichlet problem, so we only sketch the details. Indeed, write
v = Hy. By Proposition and the C® — C* bound for %, it suffices to control v in H**2 (Q) by
the right-hand side of . As with the Dirichlet problem, the procedure is to write the Laplace equation

for uw = v; o H; and to reduce matters to the standard estimate for the Neumann problem on the half-space
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(which is available since s > 1). The only added technicality is that there are extra source terms coming from
the Neumann data (in contrast to the source terms which do not appear for the Dirichlet problem with zero
boundary data). By using Proposition and an analysis similar to Proposition it is straightforward
to obtain the preliminary estimate

Ci(rta— ; _1_,
[Pllz=ry Sa vl @) + NGl gy + [T ee sup 2 Jrte ”Ilvgl-llcam>+sglg2j(s+5 [ P
J J

where v := v} + v} is any partition of v. The first term [|v]|51(q) is harmless and can be controlled by
]l z2 ) + N9 z2(ry using the Hz — H' bound for H and Lemma We then take vj = H} and
v? = H1p? and use again the C* — C* bounds for H and (5.20) to conclude. O

We will also need the following iterated version of the ellipticity bound above.

Proposition 5.26 (Ellipticity for the Dirichlet-to-Neumann operator II). Let s > % and let k > 1 be an
integer. Then using the same notation as the previous proposition, we have the bound

—j(a—1+r j(s+k—1+B—¢
[llrov5cry S 1oy HIN 0l I s Sup 20 o 4sup 2770 )y
J J

Proof. Lemma[5.23|and Proposition [5.25] give us this bound for k = 1. For k > 2, we may assume inductively
that the corresponding estimate holds for all 1 < m < k — 1. We begin by applying Proposition to
obtain
(5.31)

—j(a—14+7r i(s+k—1 —e€
[l zrovrry Sa ll¥ll2 @)y HING | gorr—r @y +HIT || gosrer S_ulg2 Jomt )”7/’31'”0“(F)+S_u182]( Hhoats )||1/J]2'||H%7/3(F)'
7> 7>

Using the inductive hypothesis, we have

||N¢||Hs+k71(r) Sa ||N1/J||L2(r) + ||Nk7/1||Hs(r) + T s st S_Ulg 27jr||¢;||Lw(r) + SU% 2j(8+k71726)||¢?||H6(r),
J> 7>

where N := gb} + qﬁ? is any partition of Ay). By Lemma the first term on the right can be controlled
by |[¢| g2 (ry which can be dispensed with by interpolation (between L? and H'"™€ to ensure the domain
dependent contributions in the estimate are harmless). Therefore, to conclude, we need to choose qul and (/)?
so that the latter two terms on the right-hand side of the above are controlled by the right-hand side of .
Using v, vj and v3 from the previous proposition, we can take ¢ = V,, P—jvj and ¢ = V,, P<;v> +V,, P>jv.
The proof then concludes in a similar way to Proposition We omit the details. g

For our energy estimates, we will also need good bounds for the following div-curl system.

Proposition 5.27 (div-curl estimate with Neumann type data). Let v € H*(Q) be a vector field defined on
Q and let s > %, a,f €10,1]. Let v := vjl- + v?- be any partition of v. Moreover, let Bv denote either the

Neumann trace of v, nr - Vv or the boundary value Vv -np. Then if v solves the div-curl system,

V'U:f7
V xXv=uw,
Bv =g,

then v satisfies the estimate,

(r+a-1) H,Ul

[Vllrs @) Sa I las-1c) + lwollms-1c@) + 19l yomg ) + 1Vlz2(@) + Tl oy sggQ’j illce @)
J

+sup 2T 02 s .
j>0
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Proof. The proof is very similar to the Dirichlet and Neumann problems in that one flattens the boundary
and reduces to the corresponding estimate on the half-space with source terms depending on essentially f, w,
g and the domain regularity. We omit the details of the domain flattening as it is similar to Proposition [5.19
However, for the sake of clarity, it is instructive to explain the div-curl estimate in the case when 2 is the
half-space {z4 < 0} (particularly in the case of the latter boundary condition involving Vv - nr). We show
that it is in essence a statement about elliptic regularity for the Neumann problem. In such a setting, np

takes the form e;. We compute for each (Euclidean) component v; of a vector field v on €,
A’Uj = aiwij + 8jf

Therefore, in the case of boundary data given by Bv = nr - Vo, the div-curl estimate is simply given by
elliptic regularity for the Neumann problem. To understand the case of the other boundary value Vv - nr,
we note that the full Neumann data for v is determined by this boundary value and the curl and divergence
of v. If j # d, this is seen from the identity

0qvj = 0jvq + wyj.

So, by the trace theorem and elliptic regularity for the Neumann problem, we have the desired control of v;
for j #d. If j = d, we have

d—1
Oava = f =Y O,
i=1
which by the trace theorem and the estimate for v; with ¢ # d gives us the estimate for vg. O

We importantly do not claim that the above div-curl system is well-posed. In fact, the problem is generally
over-determined (as, for instance, the curl and divergence fix Av, which forbids certain choices of Neumann
data). Fortunately, we will only need the above estimate in our analysis later when we prove energy estimates
and to a lesser extent in our construction of regular solutions. We will not need any existence type statement

for the above system, however.

Next, to complement the ellipticity estimates for A/, we will also need the reverse estimates which control
powers of N applied to a function in terms of the corresponding Sobolev norms of that function. As a

preliminary step, we state the following proposition.

Proposition 5.28 (Normal derivative trace bound). Let s > 0, r > 0 and «, 5 € [0,1]. The normal trace
operator V,, :=nr - (V)|r satisfies the bound

(s+8+3

IVaoll rsry Sa ||U||Hs+%(9) + T[] s+ st>1132*j(“1+a)||v;||ca(m + S;1>118 2 76)\\032'“111—[*(9)-
J J

Proof. Using the partition Vv = w]1 + wjz- where w]1 = VP<jvJ1- and w]2 = VP<jv12 + VP v together
with the inequalities ||nr||gs+r@y Sa [T g+ and [[nr| ey Sa 1, we obtain from Proposition and

Proposition (after possibly relabelling €),
IVavllas @y Sa (V) rllas @y + [Tl e sup 277" |wjl e o) + sup 2j(s_2€)|\wj2'|r||L2(r)
J j

Sallvll gors ) + 1T zresrea sup 277" Jwj || e o) + sup 22Ny -

By estimating

) [l @) Sa 2707 v} e ()
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and

2j(8726)||w?|| + 2j(s+%+576)|

Sa vl |”]2'||H17B(Q),

H3*<(Q) m+3 ()

we complete the proof. O

We can use Proposition and the balanced bounds for H to prove a refined version of the H*T1(I') —
H*(T") bound for .

Proposition 5.29 (Dirichlet-to-Neumann operator bound I). Let s > %, r>0, a€l0,1) and B € [0, %)
Then

i (stlig_
HN'l/)”HS(F) SA ||'¢)||Hs+l(l") —+ ||].—‘||Hs+1+r sglg 2 jlr—14a) ||¢]1 ”CQ(F) + Sg}g 2](3+2+ﬁ €) ”w?”H%’B(F)
J J
for any sequence of partitions ¢ = w]l + %2'-
Proof. The proof begins by writing A’ = V,,H and applying Proposition to obtain

||N7JJ||H5(F) S,A ||'H’l/)||Hé+%( + ||F||Hs+1+r Sulg 2*j(rfl+a) ”'ijl_”Ca(Q) + Sulg 2j(s+§+576) HHQZJ?”HPB(Q)'
J> 3>

Q)
Using the C* — C bounds for H, (5.20) and Proposition we conclude the proof. O
Similarly to the ellipticity estimate for A, we will need a higher order version of the above estimate as well.

Proposition 5.30 (Dirichlet-to-Neumann operator bound II). Let m > 1 be an integer, let s > % and let

r>0,a€0,1) and B € [0,3). Then we have the bound

s _ (o1 e
HNm’(/JHHb(F) SA ||¢||Hs+m(p) + ||F||Hs+7‘+m sup2 ji(r+a UH’L/};HCO‘(F) + S,uP 2](3 5+m+8 )”wj?” 1-s
7>0 3>0 H @)

and the closely related bound when s > %,

(5.32)

[HN ™00y g S [l oy + DD 524Dl oy + sup 2= H+mt8=Op2)
>0 >0

for any partition ¢ =} + 3.

Proof. We begin with the first bound. The previous proposition handles the case m = 1. Suppose m > 1
and let us suppose inductively that the bound holds for all integers greater than or equal to 1 and strictly
less than m. Then we have from the inductive hypothesis,

(5.33)  IN"llmsr) Sa INYllgerm-1y + [T geemer sup 279"l oo () + sup 26712 ey,
> j>

where N := (b; + ¢§ is the same partition of /¢ as in the proof of Proposition Applying the inductive
hypothesis again to the first term on the right and arguing the same way as in Proposition to control
the latter two terms in favour of v, 1/1} and wf- concludes the proof of the first estimate. To obtain the latter
estimate, we proceed in a similar way as above. For the case m = 1, we can use Proposition to control
||HN1/}||HS+%(Q) by the right-hand side of 1' Then one concludes the bound for all m > 1 by induction

as above. O

Next, we note a bound for the operator V' which follows from similar reasoning to the above.
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Proposition 5.31. Let s > 1, r >0, a €[0,1) and B € [0,%). Then

—j(r—14+a j(s+3 —e€
(5:34) VT llmery Sa 9l aerry + 1T mesier sup 27707 [ | oy + sup 2762072 o,
j>0 3>0 H )
for any sequence of partitions ¢ = w]l + ¢]2-

Proof. By writing
V' = VHY — npNy,

the proof follows essentially the same line of reasoning as the proofs of Proposition [5.28 and Proposition [5.29
We omit the details. ]

Finally, we note a bound for N™V,, which will be needed frequently in the higher energy bounds.
Corollary 5.32. Let a,3 € [0,1], s > 1 and r > 0. We have
m —j(r+a— (s Lim—e
INTVolzs vy S 10l sms d ) F ITlzesremer sup 27 ol o @) +5up T390 1
J J

where v = ’Ujl- + 0]2- is any sequence of partitions of v.

Proof. We omit most of the details. The proof proceeds by first using Proposition with the partition
Vv =nr - wjp +nr - wip in L%(T) + H(I') where w; and w} are as in the proof of Proposition and
then using Proposition to estimate V,v in H*T™, O

5.6. Moving surface identities. In this section, we suppose that €2; is a one parameter family of domains
with boundaries I't € A, which flow with a velocity vector field v that is not necessarily divergence free.
Our purpose is to collect various identities and commutator estimates involving the material derivative
Dy := 0y + v - V and functions on I';. We begin by recalling several algebraic identities, many of which were
proven in [41].

(i) (Material derivative of the normal).

(5.35) Dinr, = — ((Vo)*(nr,)) "
(i) (Leibniz rule for AV).

(5.36) N(fg) = fNg+gNf—2V,A Y (VHf VHg).
(iii) (Commutator with V).

(5.37) (D¢, V]g = =(Vv)*(Vg).
(iv) (Commutator with A=1).

(5.38) [Dy, A7 g = A" (2Ve - VAT g+ Av- VA lg) .
(v) (Commutator with 7).

(5.39) Sof = [Dy, H|f = A1 2V - VPHSf + VHS - Av).
(vi) (Commutator with N).

(5.40) Sy f = [Dy, N|f = Dnr, - VIS — nr, - (Vo) (VHS)) + nr, - V([Dy, H] f).
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We also have the general Leibniz type formula,

(5.41) i/ fdS = [ Dif+f(D-v" —kvt)ds,
dt Ff, Ff,

where D is the covariant derivative.

5.6.1. Balanced commutator estimates. Using the above identities, we now establish refined estimates for
commutators involving D, and the Dirichlet-to-Neumann operator. If we assume that v is divergence free,

it is a straightforward calculation to verify that Sp can be rewritten in the form

(5.42) Soth = ATV - B(Vv, VHi)),

where B is an R%-valued bilinear form. Using , we can write the commutator [Dy, N as follows:
S19 := [Dy, Nt = V. Sotp — VHY - (Vv) =V 4p - Vo - np, .

In the higher energy bounds, we will need an estimate for higher order commutators Sy, given by

(5.43) Sip o= D, N* = Y N [Dy, NIN™,

I+m=k—1
where [, m are non-negative integers and k£ € N. From now on, let us write A = HUHC%'*"(Q) + |IT|c1.e. For
s > %, we have the following refined estimates for S when v is divergence free, which will be useful for

estimating S Dya and Ska, respectively, in the higher energy bounds.

Proposition 5.33. Suppose that the flow velocity v is divergence free and let s > %, k > 1. Then we have
the following bounds for Sk.

(i) (Variant 1). For any sequence of partitions ¢ = 1/)]1» + 1/)?, there holds

1Sk llzre ey Sallollwroe @ ¥llmssemy + 101 gor g o g 19y + 1T gor g i lll ooy
-4 j(s+k—e
Fllollwre@ITl orrsz 32182 2oy + vl o) sup 27|92 | ey
J J

(i) (Variant 2).
1Skl s (ry Sallvllwree @)l ge+x @y + ||F||HS+’€+1(||¢||C%(F) + [vllwr.o @y 1Y Los (1))
el @y o
Proof. We will focus on the first estimate as the second one is similar. From (5.43), we need to prove the
estimate in (i) with the left-hand side replaced with N'[D;, NJN™ where [ +m = k — 1. We will focus first

on the term N*(V,,SoN™4)) which is the most difficult to deal with. Let us write G := B(Vv, VHN™1)) for
notational convenience. We begin by applying Corollary and then Proposition to obtain (using the

identity (5.42)),
m —j(m+3 —
INUTMSN ™) i16) St NG g+ T o 502 DAY G
j
+sup 20TV ATV - G2 | 1.,
§>0
where G = G} 4 G7 is a partition of G defined by taking G} = B(VP;v, VP;HNZ¢)), where N =

V. P<jH. Using the C¢ estimate for A~! and the maximum principle for H, it is straightforward to control

—ilma ) A —
277D ATIV - Gl ) Sa ||U||C%+E(Q)||¢||L°°(F) Sa l¥llze -
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Moreover, using the H~1 — H} estimate for A=!, we can control the other term by
j 3¢ - ji(s ¢ m m
9 (s+i+3 )||A 1y . G?“HI(Q) <a 9i(s+1+3 )||v||W1,m(Q)||VP<j7-l ) — VHN Gl 2@
ol v g5 gy ¥

Finally, it is straightforward (albeit somewhat technical) to verify that the terms on the right-hand side
above can be controlled by the right-hand side of ({ij) using the H* — H 37¢ hound 1) Proposition
Proposition |5.9| with g7 = g (and the fact that |[nr|cer) Sa 1) as well as the H32%e — HE€ trace estimates.

Now, we turn to estimating ||G|| By performing a paradifferential expansion as in Proposition

HF S Q)
it is easy to see that

1Gll e+ 4 g St N0l @ NG yevii g g + [ Toaarm s Vo

Using Proposition and Proposition the first term on the right can be controlled by the right-hand
side of . For the latter term, we need to control the [? sum of

o )

21 HED || PVuP i VHN ™| 12 (0.
For this, we estimate
21D Py VP s VHN™ | 12(0) Sa 27T | Py| 2y [ L= (ry
+ 276 [0 e ) | Py - a VN = NZ)Y 220

The first term on the right when summed in [? is controlled by the right-hand side of . The same is true
for the latter term after making use of (5.20) and Proposition m This concludes the full estimate for
NV, SoN™p). The other terms in N'[D;, N]N™) are dealt with similarly. O

6. REGULARIZATION OPERATORS

Let Q, be a smooth, bounded domain with boundary I',. In the following, we let 2 be a bounded domain
with boundary T' € A(T'4,€,6) where € > 0 and § > 0 are small positive constants. As usual, we will
abbreviate the above set of hypersurfaces by A, and consider the volume of the associated domains as part
of our implicit constants. We recall from that we have the diffeomorphism from I', to I' given by

Or(z) = 2 + nr(z)v(z)

which parameterizes I' as a graph over I',. When constructing solutions to the free boundary Euler equa-
tions (and also when proving refined energy estimates), it will be important to have a good regularization
operator at each dyadic scale which preserves divergence free functions. More precisely, beyond the obvious
regularization properties (to be outlined below in more detail), our operators will need to have the following

properties.

(i) (Extension property). There is a §y > 0 such that the following holds: If Q; is a domain contain-
ing Q with boundary I'; € A, such that [|dist(z, )|z~

regularization W< ;v at the dyadic scale 27, defined on Q;.

) < 50277 then there is an associated
(ii) (Regularization is divergence free). Given {); as above, the regularization ¥<;v satisfies V- W<;v = 0

on ;. Here, v is a divergence free function on .

Remark 6.1. The first point will be convenient later for comparing velocities defined on different domains,
which are sufficiently close. The second point is important as our regularization operators will not necessarily

commute with derivatives (but will commute with derivatives up to lower order terms).
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A more precise description of the above regularization operators is given by the following proposition.

Proposition 6.2. Fiz ag, letv, Q and Q; be as above and let A = ||T'||c1.c. Then there exists a reqularization
operator U<; which is bounded from Hj, () — Hj, (Q;) for every s > 0 with the following properties.

(i) (Regularization bounds).
1 <j0llrevaqa,) Sa 2%vllms (), 0<a
(i) (Difference bounds).
[(Wejrr — i)l mo-aqyun) Sa27%0llg=), 0 <a<min{s, ag}.
(iii) (Error bounds).
I = O <)vllms-aga) Sa 277V e @), 0 < a < min{s, ao}.

Proof. We begin with a preliminary step of constructing a regularization operator ®<; with the above three
properties which maps H*(Q) to H*® (Q ) where Q is a neighborhood of €2;, but does not necessarily preserve
divergence free functions. To do this, we aim to construct a suitable kernel K7 such that

Dojv(z) = / K9 (2, y)oly) dy.

Here, the kernel K7(x,y) is of the form

= Ki(z,y)xx(x),
k=0

where (xx)7_, is a partition of unity of a neighborhood of 2, obtained by selecting an open cover {Uy}7_,
so that there are vectors (ex)j_; all of the same length with ej outward oriented and uniformly transversal
to ' N Ug. The remaining set Uy is then chosen to cover the portion of 2 away from the boundary. Let
eo = 0 and take e, with k € {1,...,n} as above. Such a smooth partition of unity can be constructed with
bounds depending only on the properties of A,. To construct K7 we consider a smooth bump function ¢,
with the following properties:

(i) The support of ¢y satisfies suppor C B(eg,01), 61 < 1.
(ii) The average of ¢y is 1, i.e., [pq Ok (2) dz = 1.
(iii) ¢y has zero moments up to some sufﬁmently large order N, ie., [p. 2%¢r(2)dz =0, 1 < |a| < N.

Then, for each j > 0, we consider a regularizing kernel
K} (2) =204 (272).

We then define K,z(m,y) = K87k(x —y) for y € Q. Note that for fixed « € Uy, Ki(x,y) is non-zero only if
2/ (x —y) € Bley,d1), i.e., y is within distance 2798; of x — 277¢j,. This is what will allow us to view our
kernel K7 not only for # €  but also for z in a O(277) enlargement of Q. With this in mind, one can check
that the family of kernels K7 satisfy the following:

(i) K7:Q; x Q = R, where Q; := {z € R?: d(,Q) < ¢277} with a small universal constant c.

(i) 0200 K7 (z,y)| < 2/ FIeHIBD for multi-indices a, B.

(it) fo, K9 (x,y)dy = 1.

(iv) [o K (z,y)(@—y)*dy=0,1<|a] <N.
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From the definition of K7, we see that ®<;v is defined on a neighborhood of §; if §y from property (i) above
is small enough. It is then a straightforward matter to verify that ®<; satisfies the regularization, difference
and error bounds in Proposition when s and « are integers (the latter two bounds requiring the moment

conditions, with N = N(«p)). The general bound follows by interpolation.

It remains to construct the regularization operator ¥<; which preserves divergence free functions. We first

note that without loss of generality we may assume that I'; € A, with the regularization bound
(6.1) ITsllors Sap,p 27C0HE179

for each integer £ > 1 and real number 0 < 8 < 1. Indeed, for large enough j, by working in local coordi-
nates and using standard mollification techniques we can use the uniform C'¢ regularity of nr to construct
a surface f‘j € A, with the bounds such that f‘j is within distance <4 2-3(1+€) of . For some small
¢ > 0, we can then define a surface I'; via the parameterization nr, := Ny, + ¢277. This defines a domain
whose boundary has the required regularization bound and which, if §y is small enough, contains all domains
within a 80277 neighborhood of 2. Therefore, it suffices to construct ¥<; in the case when I'; satisfies .

We make this assumption for the remainder of the construction.

Next, we correct ®<;v by a gradient potential. We define for v € Hj, (),
\IISJ"U = (I)Sj’l) - VA;)}(V . @Sjv),

where A;)jl is the solution operator for the Dirichlet problem with zero boundary data associated to the

domain ;.

To prove the regularization bounds for ¥<;, we note that because v is divergence free, we have

(6.2) Vv =) / &1 (y)Vxn(z) - (v(@ —277y) — v(z)) dy.
k=0
In other words, no derivatives fall on v or the kernel when taking the divergence. From the above formula,
one can easily verify the following bounds for V - ®<;v for every s;,s2 > 0:
IV - @<jvll e ;) Sa 277%2|v]| gorsea 0)-

To establish the regularization property of W<, we use this and (6.1 together with the balanced Dirichlet
estimate Proposition to obtain

IVAGH(V - @<jo)|lmoteiay) Sa 27%(0]lmso)-

Therefore, the regularization bound ||¥<;vl|ge+a(q,) Sa 2/*||v] () follows immediately. The bounds for

Vet1v — Ve v and I — W<;v are analogous. O
Finally, we note the pointwise analogues of the above estimates.

Proposition 6.3. Given the assumptions of Proposition the regularization operator W<, satisfies the
following pointwise bounds for 0 < a < 2:

1V < 0]l caa,) Sa 2P ||v]lca-s(),
for0 < B < a, and

(I =Y <i)vllcaqe) + (¥<jrr — T<i)vlloaia, ) Sa 2778 v]lcateqy,
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for 5> 0.

Proof. The corresponding bounds for ®<; are straightforward to directly verify. To estimate the gradient

correction, we again may assume without loss of generality the bound (6.1) and then use the pointwise

estimates from Proposition and Proposition [5.15 O
6.1. Frequency envelopes. Let ' € A, and let s > %Jrl. Suppose that v € H*(£2) and suppose that I' € H*
is parameterized in collar coordinates by x — x+nr(z)v(x). At this point, we define A := ||I'||g1.c + ||v||C% @

Using the extension operator from Proposition we have the following Littlewood-Paley decomposition

v = ZPjv,

Jj=0

for a function v defined on €:

where by abuse of notation Pjv is interpreted to mean P;FEqv where Egq is as in Proposition and
Py is to be interpreted as P<g. We also have a corresponding Littlewood-Paley type decomposition for
functions on T',. Indeed, denote by (D), := (I — Ap,)z. For functions on I',, we then write for j > 0,
Pj := @(279(D),) — p(277THD),) and Py := ¢((D).) where ¢ : R — R with ¢ = 1 on the unit ball and
with support in B3(0). We then have from Proposition the almost orthogonality
1@, D) ~a > 2% (1Pl aqae) + 1Pl aqe,y) -
§>0
The above equivalence will allow us to define H® frequency envelopes for states (v,I') € H* with the I decay

required to establish our continuous dependence result as well as the continuity of solutions with values in
H* later on.

Remark 6.4. To define the Littlewood-Paley decomposition above, we use the extension Eq from Proposi-
tion m (as opposed to, e.g., the Stein extension) because of its transparent continuous dependence on the
domain. This will be important for establishing continuous dependence of solutions to the free boundary
Euler equations with respect to the data when we have to compare frequency envelopes for different initial
data.

Definition 6.5 (Frequency envelopes). Let s > % +1, T € A, and (v,T') € H®. An H® frequency envelope
for the pair (v,I') is a positive sequence ¢; such that for each j > 0,

1250l grs way + [ Pjme | = r.y Sa ¢l (v, D)llae, llejlle Sa 1.
We say that the sequence (c;); is admissible if ¢y ~4 1 and it is slowly varying,
c; < 200kl j k>0, 0<d<1.
We can always define an admissible frequency envelope by the formula
(63) 5 = 2759 4 (14 (0, 1))~ max 209 (| P geqay + | Piellsecr.) -

Unless otherwise stated, we will take this as our formula for ¢;. The following proposition will be useful in

our construction of rough solutions later on as well as for proving continuity of the data-to-solution map.

Proposition 6.6. Let I' € A, and let s > % + 1. Suppose that (v,T') € H* and let (c;); be its associated
admissible frequency envelope. Then there exists a family of reqularized domains Q; with boundaries I'; € A,

and I'; € H® along with associated divergence free regularizations v; :== W<;v defined on a 277 enlargement
of Q; U such that the following holds.
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(i) (Good pointwise approzimation).
(v;,T;) = (v,T)  in C* x Chr  as j— oco.
(i) (Uniform bound).
(03, T)llee Sa ll(v, T)]ee
(iii) (Higher regularity).
(05, Tj) et Sa 2%;||(0, D) s, a > 1.
(iv) (Low frequency difference bounds). On a 277 enlarged neighborhood of ;U Y41, there holds
(v mr,) = (Wj1,00,40) lzexze Sa 277%¢]| (0, 1) |[ge-

Proof. We define I'; by the graph parameterization nr, = P<;nr (using the projections defined above). By
Sobolev embedding, we have |nr, —nr| < 2737 , and so the existence of the required divergence free regular-

ization v; := ¥<,;v comes from Proposition

Next, we turn to verifying the above four properties. We focus on the bounds for v; as the bounds for I'; are
similar (and simpler). Properties and are clear from Sobolev embedding and Proposition Next,
we turn to property . We begin by establishing this property for ®<;v and then we will upgrade to the

full divergence free regularization v; = W<;v. We write w' as shorthand for Pjw and begin by splitting

1@ <jvllera <D [1P<io! e + D 1@<jo! |l prova
I<j 1>j

For [ < j, we estimate
1@ <j0 [ mrove Sa 0! laore Sa 2%all(v,T)llae Sa 27%¢;220D|(0, 1) e
For [ > j, we estimate
1@ <j0! [ mrova Sa 27CF 0!l L2 Sa 27%¢;207 D679 |(v,T) e
Summing up each contribution gives
1®<j0llrrova Sa 27%¢]|(v, 1) ||ge-

To obtain the corresponding bound for ¥<;, we simply note that by Proposition

VALY - B ol gese Sa [®cyollmere +2EH [T @ o 1o

By (6-2), we have 276+ ||V - & ;0|12 <a 29%||v| = Therefore, if we choose § in the definition of ¢; so that
279¢ < ¢;, we have
19 <jvllrese Sa 2% (v, 1)l

This establishes property for W< v. The proof of property is similar except now one can use the
difference and error bounds in Proposition We omit the details. O
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7. HIGHER ENERGY BOUNDS

Let &k > % + 1 be an integer. Our aim in this section is to establish control of the H* norm of (v,T) in
terms of the initial data where the growth of these norms is dictated by the pointwise control parameters
A and B below. To accomplish this, we will first construct a coercive energy functional (v,T) — E*(v,T)
associated to each integer k > % +1 and then we will prove energy estimates for E¥(v, ') to obtain estimates
for ||(v,T')||gx when (v,T') is a solution to the free boundary Euler equations. More precisely, we prove the

following theorem.

Theorem 7.1. Let s € R with s > %—&-1 and let k > %—l—l be an integer. Fiz a collar neighborhood A(Ty, €, d)
with § > 0 sufficiently small. Then for T restricted to A, there exists an energy functional (v,T) — E*(v,T)
such that

(i) (Energy coercivity).
(7.1) E*u,T) a4 1+ [|(v,1)] e

(i) (Energy propagation). If, in addition to the above, (v,I') = (v(t),T}) is a solution to the free
boundary Euler equations, then E*(t) := E*(v(t),T}) satisfies

d

2 E" Sa Blog(1+[|(v,T)lus) B

Here, A :=14|Q| 4+ ||v]] Q) +|Tllcre and B := 1+ ||[v||w1.00 () + HI‘HCL%.

cate(

By Gronwall’s inequality, this gives the single and double exponential bounds
t
1(w(®), Te)llfpe Sa exp (/ CaB(s)log(1+ II(U,F)IIHs)dS) (1+ [[(vo, To) I ge)-
0

t
1(w(®), To)llfpe Sa exp (log(CA(l + ”(UO?FO)”%—M))GXP/ CaB(s) d8>
0
for all integers k > % + 1.

Remark 7.2. It is important to note that the first part of Theorem does not make any reference to the

dynamical problem.

7.1. Constructing the energy functional. Before establishing the above theorem, we motivate our choice
of energy. At this point, the discussion will be heuristic only. There are two quantities to control; namely,
the H* norms of v and I'. However, these are coupled via the nonlinear evolution, so they must be measured
in tandem. We achieve this by working instead with well-chosen good variables, which are selected as follows:
i) The vorticity w. If v is a divergence free vector field on €, then in Euclidean coordinates, we have
the following relation for Aw;:
Av; = —0jw;j,
where w denotes the curl of v. Therefore, v is controlled by w and a suitable boundary value.
However, it turns out to be simpler to view v as the solution to a div-curl system, again with a
boundary condition whose choice will be addressed shortly.
ii) The Taylor coefficient a. This variable is used to describe the regularity of the boundary. Precisely,
as we will see later, we have the approximate relation

J\/’aza/ﬁ
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where k represents the mean curvature of I'. Thus, as long as the Taylor sign condition remains
satisfied, the H* norm of I" should be comparable at leading order to the H*~! norm of a.
iii) The material derivative of the Taylor coefficient, D;a. At leading order this provides information

about v via the approximate paradifferential relation
Dia ~ NT,v,

for a suitable representation of the paraproduct above. This will provide the needed boundary

condition for the div-curl system for v.

Thus, at the principal level we have the correspondence
v <> (w, Dia), I+ a,

which will be the basis for our coercivity property. For the first part, it is better to think of v as solving a
div-curl system. One might try to think of a rotational/irrotational decomposition v = v;.o¢ + vy, where the

two components solve div-curl systems as follows:

curl v, = w, curlv;. = 0,
V - vpor = 0, Vv =0,
Urot N =0 on T, Vip-np =0v-npr on .

Unfortunately, such a decomposition is not well-suited for our present problem, essentially due to the fact
that in our setting nr has less regularity than v on the free boundary; namely, H*~! versus H k=3, Hence,
we cannot use such a decomposition directly, though a paradifferential form of it will appear later in our
existence proof. Instead, we will bypass this difficulty by associating the D;a variable with Vv - np, the
normal component of the tangential derivatives on the boundary, which will then play the role of the bound-

ary condition in the div-curl system for v. This, in turn, yields the v part of the coercivity bound.

Now we turn our attention to the dynamical side, which ultimately determines the choice of the good
variables. There we separate the good variables differently, into the vorticity w € H*~1(£2) on one hand,
which will provide the interior component of the energy, and the pair (a,D;a) in H*~1(I') x H*~% ('), which
carries the boundary component of the energy. For the vorticity, this is immediately clear from the equation

(7.2) Dywij = —wir0jvk + w;rO;vg,

which results from taking curl of (1.1)). Based on the transport structure of the vorticity, it is natural
to include the quantity ||o.)||%,k,1 (@) @ a component of the energy. On the other hand, it turns out that

D 2 .
M@ D),

the linearized equation to leading order with

can be controlled by the linearized energy FEj;p,(wg, si), where s and wy, solve

wy, = VHN*2D,aq,

s, =NF1a.

The derivation for this is a bit more involved than for the vorticity and will be handled later.

With the above discussion in mind, we define our energy as follows:

(7.3) E*(0,T) == 1+ [0l Z20) + lllFe-s () + Biin(wr, si).
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In the sequel, we will sometimes refer to ||lwl|%,,_, () 8s the rotational part of the energy, denoted by EF(v,T),
and Ej;p, (wy, s;) as the irrotational part of the energy, denoted by EF(v,T).

Remark 7.3. This definition of the energy has to be interpreted in a suitable way when v and I' do not
solve the free boundary Euler equations. Indeed, it is important that, a priori, the definition of the energy
functional does not depend on the dynamics of the problem. Therefore, for a bounded connected domain 2
with (v,T') € H*, we define p through the boundary condition pir = 0 and the Laplace equation

Ap = —tr(Vv)2.
The Taylor sign term is then defined via

a:=—nr-Vppr.
Moreover, we define D;p through the Dirichlet boundary condition Dypjr = 0 and AD;p given by
(7.4) AD;p = 4tr(V3p - Vv) + 2tr((Vv)?) + Av - Vp =: F.
In other words, Dy;p = A~'F. This is the definition of D;p which is compatible with the dynamical problem.
We then define D;Vp by

DVp:=—-Vv-Vp+VDp
and then D;a by
Dta = —nr- Dth|p

With these definitions, the energy functional ([7.3)) is well-defined, irrespective of whether the state (v,I")

evolves dynamically.

Remark 7.4. We note that the energy functional is essentially the same as that from [I7]. The main
difference, so far, is in the derivation of this energy. Indeed, our approach was to identify Alinhac style good
unknowns, whereas [I7] first derives a wave-type equation for a and then applies powers of the Dirichlet-to-
Neumann operator to this equation, as if it were a vector field. However, as can be immediately inferred

from the low regularity of our control norms, the way we treat the energy is very different from [I7].

7.2. Coercivity of the energy functional. We begin by establishing the coercivity part of Theorem
That is, we want to show that
E*(0,T) ma 14 [|(v,T)|[3g-

We begin by collecting some preliminary estimates for the various quantities that will appear in our analysis.

7.3. L*° estimates for coercivity. Here we will establish some L°° based estimates for p and Dyp in terms
of the control parameter A. The A control parameter involves only the physical variables v and I'. The
variables p and D;p are related to these variables through solving a suitable Laplace equation. We will
therefore need to make use of the Schauder type estimates in Proposition to control these terms (in

suitable pointwise norms) by A. For this, we have the following lemma.

Lemma 7.5. Given the assumptions of Theorem[7.1} the following pointwise estimates for p and Dyp hold.
(i) (CY€ estimate for p).
[pllcre@) Sa 1.

(ii) (Partition bound for Dip). There exists a sequence of partitions Dyp =: Fj1 + sz such that

[EH lwroo(o) S4 27279 IF2 | gy Sa 27779 (||u]| gra—e o)y + ||PHH:€+%75(Q))'
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One can loosely think of the partition of D¢p in the second part of Lemma [7.5 as a splitting of D;p into low
and high frequency parts at a dyadic scale 27. The high frequency part will typically be best estimated in L?
based norms, and the low frequency part in L® based norms. In particular, one can think of the estimate
for F jl as an estimate for the “low frequency part” of Dyp in C 3F¢, This will serve as a substitute for what
would be a C2+¢ estimate for the inhomogenenous Dirichlet problem, which is not available to us (except

for harmonic functions). The usefulness of this will be made more transparent later.

Proof. We begin with some notation. For any integer [ > 0, we write ®; := ®<;; — P<; and ¥; =
Vo1 — Pey. We also write ®g and ¥y to mean @< and W<, respectively. For a vector or scalar valued
function f defined on Q, we write f! and f=! as shorthand for ®;f and ®<; f, respectively. If in addition, f
is a divergence free vector field, we instead use f' and f<! to mean ¥;f and W<, f, respectively. This will
ensure that the divergence free structure of f is preserved. We abuse notation and write f'g<! to mean

1
flg=t=3_ > flg" =35> f'd"

1>0 0<m<l 1>0

This definition ensures (with the convention that &y = &< and ¥y = ¥<() that we have the decomposition

(7.5) fg=flg=" + =g,

which can be thought of as a kind of crude bilinear paraproduct decomposition where f'g=<! selects the
portion of fg where f is at higher or comparable frequency compared to g. Likewise, we can define trilinear
expressions of the form flg='h=! in such a way that we have fgh = flgSthSt + fSlgthSt 4 fSlgSIpl and
similarly for quadrilinear expressions. Now, we begin with the first part of the lemma. Expanding using
(7.5) we see that

(7.6) p=—A"1tr(Vo)? = 72A*18j(vfaivj§l).

Importantly, because v' is divergence free, we were able to write tr(Vv)? as the divergence of a bilinear
expression in v and Vv, where the high frequency factor is undifferentiated. This will allow us to make use
of the lower regularity C1'® estimates in Proposition and simultaneously allow us to rebalance derivatives
in the bilinear expression for v. This theme of writing multilinear expressions in divergence form with the
highest frequency factor undifferentiated will appear several times in the sequel in more complicated forms.
In this case, we have from Proposition

<l
Ipllore@) Sa vaaﬂj_ lee) Sa ||”UH2C Sal

i)
Next, we turn to the estimate for Dyp, which is the more difficult part. From (7.4]), we can write in Euclidean

coordinates,
(77) Dp = 4A’1(8i0jp8ivj) + 2A’1(8jvk8kvi8ivj) + A’l(aic")‘ivjajp).

In order to make full use of Proposition [5.15] we will again need to write D;p in the form A='V - f for some
vector field f in a way which allows us to also rebalance derivatives, as we did in the estimate for p. We
start by estimating the first term in (7.7)). We first write 0,0;p0;v; = V - (9;pd;v) and use the partition

ATV - (9pd) =T + T3,
where le = A"V - (0;p9;®jv). From Proposition and the C¢ estimate for p above, we have

1.
ceQ) SA 21(z=¢),

T} w0y Sa VPl @ IVO<j0ll L @) + VDl Loe (@) [ VR <50
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We also see from ([5.19)),
T2\l 10y Sa 277% 79N Vp| e (o 0]l rr—c () Sa 277F 179 [0]| gre—e (.-

Next, we turn to the second term in (7.7). We start by performing a trilinear frequency decomposition.
Using the symmetry of the indices, we have

(7.8) ajvkakvi&-vj = 38jv,l€8kvflaivj§l.

To best balance derivatives, we would like to write this in the form V - 7(v!, Vo=, VoS!) where T is an
appropriate trilinear expression. To do this, we can use the symmetry of the expression and the fact that v
is divergence free to write

1o <lo <l 1o <la <I ! <lgy <l
0ju,0kv; Ovy = 0 (v, 0, V5 divy ) — v, 0,0, U5 divy

1

(7.9) = 8]' (vi@kvflaing) - ivfﬁk(@jv?laivfl)
1

= 0;(vOkvi " 005 ) — iak(vgajvflaw.él).

We partition the last line above into Q} 4+ QF where

1
Q) = O (0O P<jv7 O05) — 5Ok (VhOm P v Oiv).

We then obtain in a straightforward way using Proposition [5.15] and summing in [,

_ (1. (1 .
AT Q} lwie () Sa 2 )”v”?(’;%“(g) Sa 297G,

and from the H~! — H! estimate for the Dirichlet problem and Proposition
AT QN () Sa 2779 [0l r-e (-
Finally, the last term in can be handled by writing
0;0;v;0;p = 0;(0;v,;0;p) — 0;v;0;0,p

and partitioning each term similarly to the first term in (7.7). Collecting all of the above partitions together

completes the proof of the lemma. O

The following simple consequence of the above lemma will be useful for estimating D;a in pointwise norms.

Corollary 7.6. Given the assumptions of Lemma there exists a sequence of partitions D;Vp = G} + G?
such that

L kg
G| (oy S4 2779, [|G3 Sa 27707229l ey + lpl + 1DVl gr-1-<(qy)-

HIT(Q) H**37¢(Q)

Proof. This follows from Lemma [7.5] by taking

G} =®;(-VO v Vp+ VE}), G =3 j(-VOzjv-Vp) + ®;VF; + 5D, Vp.
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7.4. L? based estimates for a and D;a. Our next step will be to control (a, Dya) in H¥1(I') x H*=3 (')

by the energy plus some lower order terms. Let us define for the rest of this section the lower order quantity

e = 0 sz + [0l 50y + ] + 1DVl 1<),

H**37<()

where € > 0 is any small, but fixed, positive constant.

Lemma 7.7. We have
1
llall =y + ||Dta||Hk" D) Sa (BM)? + A

Proof. To control a in H*~1(T"), we use the ellipticity estimate for the Dirichlet-to-Neumann operator from
Proposition to obtain

_ 1
lall s ry Sa llallzzy + IN* " all 2oy + [Tl g lalloery Sa (BF)? + Ag—c.
To estimate Dya in H*=3(T"), we consider the partition D, Vp := G + G7 from Corollary |7.6(and estimate
using Proposition [5.26]

_ _i(l_¢ (k—2¢_3
||Dta||Hk” ) Sa ||N’c 2DtaHH%(F)+HP”H’“*€ 5_11182 iz )||7LF'G}||L<><>(1“)+S.UIO>2](’c 2 2>||”F'G§HHE(F)+A1€75.
J> i>

From the trace theorem,

IN*2Dyall 1 Sa [HN* 2 Dyall (0.

HE() ~
Since k£ > 3 and

/N’f—QDtads = / nr - VHN*3DadS = 0,
r r
we conclude by a Poincare type inequality that
||’H./\/k72Dta||H1(Q) ,SA HVH./\/’“’QDtaHB(Q) /SA (Ek)%

From Corollary we have

sup2 G ||np - G1 ey Sa L.
7>0

On the other hand, from the trace theorem and Corollary
(b3 o
252729 Inp - G2 ey Sa ke
which completes the proof. 0

With our preliminary estimates in hand, let us proceed with the proof of the first (and harder) half of the
coercivity estimate; namely,

|0, D) xS (B2
Let us begin by proving the estimate

(7.10) T e Sa (B®)? + Ap_e.

(.

We start by recalling from Proposition that we have
Tl e + llne |l ge-1ry Sa 1+ |6l ge-2(r),

where « is the mean curvature of I'. Therefore, to establish (7.10)), it suffices to establish the same estimate

except with [|p]| + ||&[| grr—2(r) on the left-hand side. To do this, we begin by relating the curvature

H* 3 ()
to the pressure via the formula

(7.11) k=a 'Ap—a ' D*p(nr,nr).
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Here, we used the fact that Arp = 0 on I'. We now estimate each term on the right-hand side of (7.11]). For
the first term, we use the Laplace equation for p and the bilinear frequency decomposition for Ap = —tr(Vv)?
as in Lemma [7.5] together with Proposition [5.9] to obtain

la™ Apllr—2(ry Sa lltr(Vo)? [l g2y + (la™ -1y + T x-) j‘ilg 277079 D_ ;0 (v 00" || e @)
+sup 2727 B s t1 (Vo) 2| L2 ().
7>0
Using the trace theorem, the product estimates Proposition and Corollary the latter two terms can
be controlled by CaAg_. where C4 is a constant depending polynomially on A only. On the other hand,
[[tr(Vv)?|| -2 (ry can be controlled using the balanced trace estimate Propositionas well as Corollary

as follows:

[tr(V0)? || r—2(ry Sa [[tr(Vo)?| ay T I e sup 277079 ;01 (0} | e )
J

o3
+ sup 2j(k_%_€) HCI)>]*'EI'(VU)2 ||L2(Q)
>0 -
Sa ..
To estimate a~* D?p(nr, nr) in H*~2(T"), we proceed similarly by starting with Proposition and Lemma

to obtain

la™ ' D?p(nr, nr) || gr—2r) Sa ID*p(ne, nr)|| gx->r) Jrsu%) 2j(k7276)||<132jD2p||L2(F)
7>
+ (la™ | prx-1-eqry + P lz7i—<) sup 27707910 D?pl| = (-
7>

Similarly to the previous estimate, the latter two terms are controlled by CaAk_.. For the term involving
D?*p(nr,nr), we use Proposition again, combined with the estimates |[nr||gr-1-¢r)y Sa [[T']|gr-- and

[[rr]

ce(r) Sa 1 to obtain (similarly to the above estimate but with a~! replaced by nr)
ID*p(nr, nr) || ge-2 ) Sa |1D?pllgs-2(r) + Ak—e.
Proposition and the same partition of D?p above then yields

ID?pll -2y Sa IVl g ) T Ab—ee

To complete the proof of 1 , we now only need to control Vp in H k=3 . For this, we use the div-curl
estimate Proposition [5.27) for Vp as well as Corollary [5.4] Proposition [5.9 and Proposition [5.31] to obtain

IVpl| ) Sa Vel + IV " al -2y + [ltx(V0)? ) T Tl [[Vp]

()

H* 3 (Q o3 (@

(7.12) Sa (B")% + [lall meer(r) + Ak
<a (EF)2 + Ay,

where we used Lemma [7.7] to go from the second to third line. From this, we finally obtain the estimate
(7.10). To close the coercivity estimate, it remains to control v in H*(Q) and D;Vp in H*~1(Q) by the

energy. We first reduce to the estimate
1
[0l e () Sa ()2 + |1 DiVpll 1) + Ak—e.
For this, we start by relating the boundary term Vv - np to D;Vp. Indeed, we have

Dth = VDtp —Vu- Vp
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Since Vp = —anr and Dy;p = 0 on I', we obtain
V'v-npr= a_l(Dth)T

and so, since v is divergence free, we have from the div-curl estimate in Proposition

[0l ey Sa lvllez) + lwllgr-10) + ||a_1(Dth)T||kag(F) T ers-e 191l g4

(7.13)

< 0™ (DVD) [ g oy + (B + Aie

2(D)
To estimate the first term on the right-hand side of (7.13]), we use the decomposition D;Vp = G} + G?
from Corollary By the balanced product and trace estimates Proposition and Proposition and
a similar analysis to the estimate for ||%[ gr-2(r), we obtain

_ _ il
la=*(D:Vp)"|| Sa DVl pr-10) + (la 1||H’C*1*€(F) —+ \|F||kas)$g%2 iz )HG;‘HL“J(Q)
J

3
HF=2(I)

+bUP 2i(k=3-29) G2 Sa DVl gr-1q) + A

H3+e ()
Finally, we need to show that
1DV Pl as-s0) Sa (B¥)? + Ai—e.

For this, we will use the div-curl decomposition for D;Vp. The divergence and curl are given by

V - D;Vp = 3tr(V3p - Vo) + 2tr(Vo)? in Q,
V x D;Vp=V?p Vv — (Vv)*-V?p in Q.

Hence, using the div-curl estimate and the partition D;Vp = G; + G? from Corollary in conjunction
with Corollary [5.4] we obtain
[ DeVpll 1) Sa llpll 0]l 3 gy + IPllcre@llollie—c () + [t:(V0)? [l re2(a) + VT (DeVD) - nrll ieg o

w3 )Vlos @)

+ |IT|| gre—e sUp 2~ iG99 GY oo +sup2j<k—%_25) G| 1. 4 Ap_e.
T s1p2 4G e + s 1620,

Estimating G} and G7 as before and then using (7.12)) gives
1DVl gre- Q) NA (Ek) + ||VT(Dth) nF||kag(F) + HU”H’“*E(Q) + 10| e + ||tr(vv)3\|ka2(sz) + Ag—e.
Using a trilinear frequency decomposition as in Lemma [7.5] we obtain easily
[6x(V0)? || 20y Sa ||UHQC%+€(Q)||U||H'H(Q) Sa Mp—e.
It remains to estimate the boundary term. We compute
(7.14) VT (D,Vp)-nr = -V Dia— D;Vp-V nr.

By Proposition Proposition and using the decomposition D;Vp = G + G7, the terms in (7.14) are
controlled in a similar fashion to the above terms by

IV (D Vp) - nr| <a | Dua FAr—c Sa (B)E 4+ Mg,

H 3 (1) H*3 (1)

where we used Lemma [7.7]in the last inequality. Combining everything together, we have

1
1DVl e (@) + [ITllaze + [olle @) + 2l yis g ) Sa (BF)? + Ak,

Using the definition of A;_. and interpolating gives

DV pll ar-1q) + Tl ax + 10l gx @) + [Pl Sa (EF)E 4 lvllz2() + [Pl @) + 1D VPl L2 ()

Y3 ()
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We can use the H! estimate for the Laplace equation for p to estimate

Il @) Sallvlla @)

Moreover, by writing D;Vp = VD;p—Vuv-Vp, writing D;p in the form A='V - f as in the proof of Lemma
and using the H~! — H! estimate for A~!, we have

1D:eVpllr2) Sa llvllm -
Therefore, by interpolation we have
(7.15) | Depll -y + [Tl arx + oy + 1Pl oy ) S (B2
This finally establishes the desired estimate

(0, D) e Sa (B2,

Next, we show the easier part of the coercivity bound; namely,

(B¥)* Sal+|(0.T) ae-
Clearly, the only nontrivial part is to control the irrotational energy. More precisely, we have to show that
(7.16) IVHN*2Dyallr2(0) + la* N* Yal p2ry Sa 1+ [[(0, D) g
To establish this, we will need the following L? based estimates for p and D;p.
Lemma 7.8. The following estimate holds:

HPHHH%(Q) + [1Depll e ) Sa (v, T)|e-

Proof. First, from the balanced Dirichlet estimate in Proposition[5.19} as well as Corollary[5.4]and Lemmal[7.5]
we have

I e gy St 68702y g + I Il oy St 10 T)

To estimate D;p, recall that we can write D;p in the form A~V - f. Indeed, similarly to Lemma we

can start by writing
(717) Dtp = A_lai(aivjajp) + 3A_182-(8jp8jv1—) + QA_ltT(V’U)S =. F1 + F2 + F3.

We now will use Proposition to estimate each term. We begin with F;. We use the partition F} =
H]1 + HJ2 where H; = A719;(0;®<,vr0kp) and Proposition to obtain,

[ Fill e ) Sa VP - Vol gr-q) + [Tl e SUISQ_%||H;||W1»°°(Q) + Sug2j(k_1)||H32\|H1(Q)-
> >

Using Corollary and the H**2 estimate for p above, we obtain

VD - Vol i) Sallvll gyve oIl o3 ) + IPlcre@llvllr@) Sa ll(w, D) e
We also have from Proposition and the properties of ®<;,
Sal,

S 2_% Hl ,00 < €
sup2 4| wiay S Dol o] 4

and from the H~! — H! estimate for A~! and Lemma we have

Sung(k71)||H]2‘|H1(Q) Sa Sulg2j(k71)HVP”LO"(Q)||v¢’>jU||L2(Q) Sa vl aea)-
7> 7>
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Hence,

(7.18) 1y e 0y Sa ll(0,T)]gs-

By a very similar analysis, we obtain the same bound (7.18]) for Fy. To estimate F3, one uses the decompo-
sition of tr(Vv)? from (7.8) and (7.9) and then partitions one of the factors VoS! = Vo _;u=! + V@ 0=l
After that, an estimate similar to F} yields the bound (7.18)) for the term Fj. Therefore,

I Depll vy Sa ll(v, D)l ae,
as desired. O

Now, returning to the proof of 1) for the term ||a%./\/k’1a||L2(p), we have from Lemma and Propo-
sition [5.30}
1 —
a2 N* a2y Sa llallax—r oy + llall Lo @D ax Sa llallms-r @y + [T ax-

Then from Proposition [5.9] Proposition [5.11] and Lemma we have
lall e-rry Sa llpll gos g ) + ITTae Sa (v, T) e
To control the other part of the energy, we first note that by (5.20) we have

IVHN*"2Dral| 2oy Sa IN*Drall g 1)

Then we apply Proposition [5.30} Proposition and Proposition [5.9] in that order, to obtain

HIT(Q)

_ i (k8 _2c
IV 2Dt“”H%(r) Sa DVl gr-1q) + [IT]| g S‘l>l%2 2 ||G}||Loo(g) —|—sg;8 9i(k—3—2 )||G?||
J J

Sa 1DVl gr-1q) + 1T g+,

where D;Vp = G} + G? is the partition from Corollary We then write D;Vp = —Vv - Vp+ VD,;p and
use Corollary [5.4] and Lemma [7.8] to obtain

1D Vpll 1) Sa ll(v, T)llge-

This completes the proof of (7.16)) and thus the proof of part (i) of Theorem Next, we turn to part (ii),
which is the energy propagation bound.

7.5. L™ estimates for propagation. Now, we turn to the energy propagation bounds. As in the coercivity
estimate, we will need certain L> based estimates for p and D;p, but in norms that have essentially % more
degrees of regularity compared to Lemma [7.5]

Lemma 7.9. Given the assumptions of Theorem[7.1] the following pointwise estimates for p and Dyp hold.
(i) (Cl’% estimate for p).

Pln 1y S B

(ii) (W estimate for Dyp). Let s € R with s > % + 1. Then
[1Depllwr. () Salog(l+ [[(v,T)]|m:)B.

Proof. We begin with the C1:Z estimate. We have from Proposition using the decomposition from (7.6)
and a similar analysis to the C1¢ estimate for p,

ce(@)) + vioivs!

<l
11,3y S4 Mg 3 (lplneqey + etdros JSa Il oy + o) Sa B

Hc%(Q
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Now, we turn to the more difficult W1 estimate for D;p. Again, we first recall from (7.7) that we have
(719) Dtp = 4A‘1(81-8jp8ivj) + 2A‘1(8jvk8kvi8ivj) + A‘l(aiawjé)jp).

Using a very similar analysis to Lemma (except without the partition of D;p), we can estimate the second

term in (7.19)) in WH* by

AT 80k 0k vi0;; )l wr.o= () Sa B.
For the first term in ([7.19) we have the decomposition
(7.20) ATH0;0;p0v5) = ATHD:0;p'0:05") + ATH(9,0;p=" D).
The first term in (7.20)) can be estimated similarly using Proposition by
(7.21) 1A (20,9 005" w2 = [AT10;(0:p' 005 ) w0y Sa [Pl e vllwe @) Sa B.
For the latter term in (7.20)), we write
(7.22) AT (0:0;p5 00)) = AT10;(0;0;p=10}) — AT10;(0:0,p="0)

and use the fact that the pressure term is at low frequency compared to v and a similar analysis to the above
to estimate

(723) ||A_1(8i8jp§laiv§-)||W1,oo(Q) SA B.

We now focus on the last term in ([7.19) which will be responsible for the logarithmic loss in the estimate.
We begin by writing

(7.24) 0:01v;0;p = 0;000;p=" + 9;0,v7' 0’
For the second term on the right-hand side of , we write
0:0:v5'9;p" = 9;(9;0,v5'p).
Again, similarly to the above, we have
(7.25) IAT10;(9;0:05 " p") w1 () Sa B.
Now, for the first term on the right of we have,
(7.26) 9;0:050;,p=" = A(0j0;p=") + 9;(v}0;0ip=") — 20;(v0;0,p=").

The latter two terms in (7.26]) are estimated similarly to (7.25). We focus our attention on the first term,
which corresponds to estimating A_IA(véajpgl) in W1, We begin by writing

(7.27) AflA(vj.ajpgl) = vé(?jpgl — H(véajpgl).
For the first term in ([7.27)) we note that
V(véajpsl) = vjaijSl + Vvé@jpfl.

From the C¢ bound for p from Lemma we clearly have ||Ué‘8jvp§l||Loo(Q) <a B. On the other hand,

we have the same estimate for Vvé-ajpgl because

<1
Vvévajpgl = Vv;0;p — Vo 9;p".
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This yields the estimate [[v50;p=!lw1.0() Sa B. It remains to estimate #(v.8;p<'), which is where we
incur the logarithmic loss. By the maximum principle, it suffices to estimate ||V7-l(v§0jp§l)||Loo(Q). We begin

by showing that for each m > 0
(7.28) 1@ VH (0;0;=) || L (@) Sa B,
with implicit constant independent of m. Indeed, we have
19 VH (050,05 | oo (@) S 19 VHP <0 (050;0=") || L (0) + | VH P (050595 | 1< (52)-
For the first term, we have from the regularization properties of ®,, and the C¢ estimate from Proposi-
tion [5.15}
1@ VH® <1 (00505 L (@) S 27 IH® <im (05050l ore() Sa 27 [ @<m (V9= [l c1e(0)
Sa 105005 lwrrce o
Therefore, similarly to the estimate for V(v9;p<"), we have
1@ VHP < (V0,0 || e () Sa B-
For the other term, we have from the regularization properties of ®<,,, and ®>,, and the maximum principle,

([ @ VH® 1 (V5005 | e () Sa 27 I HP51m (V50;0=1) || Lo () < 27 [ @5 (v50;p=Y) ] Lo o)
<Sa ||v§3jPSlHWLoo(Q)~

Combining everything gives (|7.28). Now, to prove the full estimate, we fix an integer mg > 0 to be chosen
later and estimate using (|7.28)),

(7.29) [VH(©L0;p=") || Lo () Sa MoB + | @50 VH(0:0;p=")| L (0)-

For the latter term, since s > g + 1, we obtain by Sobolev embedding, the regularization properties of ®>,,,

and the elliptic estimate for H, the estimate
195 m, VH (@505 [ 1 (@) Sa 27" [H (050,05 |- (0) Sa 27 ™% |(v, 1),

where r > 1 is some integer and Jy > 0 is a constant depending on k. Taking mg = 70, " log(1 + ||(v,T)||ms)
and combining everything above with ([7.29)) then yields

IVH (050;0=") | L= (@) Sa Blog(1 + [|(v,T)]|s).
This completes the proof of the lemma. (|

Remark 7.10. It is perhaps worth remarking that by using Proposition [5.15] and the maximum principle

to estimate ||V’H(U§ajpgl)||Loo(Q) in the above proof in C¢, we can also easily obtain the bound

[ Dipllwro @) Sa llvlleteq).-

Of course, we do not want this in our energy estimates as it would force us to forfeit the scale invariant

control parameter B.
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7.6. Proof of energy propagation. Now, we turn to the second part of Theorem (7.1} Using (7.2)) and
the coercivity bound (7.1)) it is straightforward to verify the following energy estimate for the rotational

component of the energy:

SEE@.T) Sa BEH0(0),T))

The main bulk of the work will be in establishing a propagation bound for the irrotational part of the energy.
Namely, we want to show that

D BE (1), T) Sa Blog(1 + (0, T)lue ) B (0(2). 7).

To do this, we start by deriving a wave-type equation for a. The general procedure for deriving this equation
is similar to [I7]. However, we need to more precisely identify the source terms in order to obtain estimates

with the required pointwise control parameters A and B.

We begin our derivation with the simple commutator identity
DVp=—Vv-Vp+ VDp.
Applying D; and performing some elementary algebraic manipulations gives
D}Vp=—VDyw-Vp+ DVDyp+ Vv-(Vv-Vp) —Vv-D;Vp
= %vaﬁ + VD?p+2Vov - (Vo - Vp) — 2Vu - VD;p,

where in the last line, we used the Euler equations to write —V.Dyv - Vp = %V|Vp|2. As Ap = —tr(Vv)? is
lower order, it is natural to further split V|Vp|? as

1 1 1
§V|Vp|2 = 5VH|Vp|2 - 5VA—1A|vp|2.
From this, we obtain the equation
1 1
(7.30) DiVp — §V7-[|Vp|2 = §VA‘1A\Vp\2 +VD?p+2Vv- (Vv-Vp) —2Vo - VDip =: g.

It will be seen later that g can be thought of as a perturbative source term. In an effort to convert (7.30)
into an equation for D;a, we take the normal component of the trace on I'; to obtain

1
(731) D?vpnff - 5/\[(0’2) =g -nry,
where we used the dynamic boundary condition p|p, = 0 to write |Vpr,|* = a®. Since D, is tangent to T'y,
we have
(7.32) D}a = —D?Vp-nr, — D;Vp- Dinr, = —DiVp-nr, + a|Dinr, |?.

Note that for the latter equality in (7.32), we wrote D;Vp = —D;(anr,) and used that Dynr, is tangent to
I';. Combining ([7.31)) and (7.32]), we obtain the equation

1
Dfa+ 5/\/(@2) = —g - nr, +a|Denr, %,
which can be further reduced using the Leibniz type formula for A/ from (5.36) to the equation
(7.33) Dia+aNa=f,

where
f:=—g-nr, +alDnr,|* +nr, - VAT(|[VHal?).
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To propagate (a, Dya) in H*Y(I';) x H*=2(T',), one natural idea, in view of the ellipticity of A/, would be
to use the spectral theorem to apply N k=% to the above equation, and then read off the associated energy
for the leading order wave-like equation. This is essentially the approach used in [I7]. However, there is a
much better choice for our purposes, which comes from instead applying VHAN*~2 to the above equation.
The benefit to this is twofold. The most important advantage is that we only have to work with integer
powers of N, which will allow us to make use of the balanced elliptic estimates from the previous sections.
Secondly, this choice allows us to reinterpret the desired estimate for (a, Dya) in H*=2(I';) x H*=3(T}) as
an L? type estimate for the linearized equation with perturbative source terms. Indeed, by defining
the variables

w := VHN* "2 Dya,

s:=Nk"1q,

q :=H(aN*"a),
we may interpret (w, s, q) to leading order as a solution to the linearized system . To verify this, note
that we clearly have V -w = 0. Moreover, we observe that g|r, = as and that w|r, - nr, = N*~1D;a. Hence,

Dis —w|r, - np, = Dy, N7 Ya =: R.
We also note that in €, by using the equation for a and the Leibniz formula for A\,
Diyw+ Vg =9,

where
(7.34) Q= —Vuv-w+ V[Dy, HJ(N*2Dya) + VH[Dy, N*“?|Dya + VHN* 2 f — VHIN® 2 a]Na.
To summarize the above in a compact form, we can write

Dyw+ Vg = Q in 4,
V-w=0in {4,

Dis —w-np, =R on I'y,
q=ason I

The linearized energy estimate from Proposition [2.2] combined with Cauchy-Schwarz and Lemma [7.9] imme-

diately gives the preliminary bound
d

1
@Ef <a Blog(1+ (v, D) [l E* + (IRl 2, + [1Qllz2 () (B)?.

It remains to control the source terms Q and R. This will be where the bulk of the work is situated. Our
goal is to show that

1
Q1200 + IRl L2y Sa Blog(1+ [[(v,T)|lse ) (B*)=.
We begin with the estimate for Q. We proceed term by term. Clearly, we have
IVo- wlp2, < BEM?.

To handle the second term in the definition of Q, we begin by recalling the simple commutator identity from

(5-42),
[Dy, H]tp = AV - B(Vv, VH)),
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where B is an R%valued bilinear form. We then estimate using the H~! — H' bound for A~! to obtain
IV[Dr, HIN* "2 D1a) | 120,y Sa BIVHN* 2 Dial|r20,) Sa B(EF)?.
For the third term in (7.34), we use the Hz (I';) — H'(€;) bound for H to obtain
IVH([De, N*721Da) | L2y Sa D6 N*21Dsal]
Then, from the commutator estimate Proposition we obtain

I[De, N 21Dall 1y S lollzzsnIDiall e + [Vllws @) | Deal + 1 Dsall Lo ) IV || e

3
H""3(Ty)

_J
+ [[vllwroe (@) IT | 25 (@20 S};IJQ 2(|G5 - nr, |l Lo 1y
J
(3
+ [[ollwr ) sup 22 2GT - [l e,
71>

where G; and G? are as in Corollary Using Lemma the energy coercivity, Lemma and 1 ,
we have

[[Ds N*21Dsall ) S Blog(L+[|(0,T) 1) (E9)?.

HE (T,

Next, we turn to the estimate for VHN*~2f, which involves the most work. We recall that
f=—g-nr, +alDnr,|* + V, A7 (|VHal?),

where g is defined as in (7.30). Using the identities Dynr, = —((Dv)*nr,)" = —(Dv)*nr, + nr,(nr, -
(Dv)*nr,) and |[VHa|? = LA|Hal|?, we may reorganize f into the expression

1 1
(7.35) f= 5V,LA*A(M)? - 5VTLA*1A|Vp|2 —V.DZp+ My + My,

where M is a multilinear expression in nr,, Vp, Vv with exactly two factors of Vv (e.g., from , the
term a|Dynr, |?), and Ms is a multilinear expression in Vp, Vv, VD;p and nr, with a single factor of each
of VD;p and Vv (e.g., the term nr, - VD;p - Vv). We will abuse notation slightly and refer to terms of the
first type as M;(Vv, Vo) and terms of the second type as Mo (VDyp, Vv). Next, we estimate each term in
VHNF =2 f, with the expression for f substituted in.

From Corollary we have

||VHNk_2VnA_1A(HG/)2||L2(Qt) <a ||J\/"“_2VnA‘1A(7-[a)2||H%(Ft)
S T | AT ARl Ly )+ AT AR e,

By writing A~ A(#a)? = (Ha)? — H(Ha)? and using the C? estimate for H from Corollary twice
together with the maximum principle, we have

IA L AM? 4y o, S Ml Hall oy ) Sa lall o ) Sa B

From Proposition [5.19] we obtain also
|A™ A 0y Sa BIT e + 1AM e
Then using that A(Ha)? = 2|VHal|?, we obtain from Corollary

IAGH -2y S Mol gy g IHall iy ) Sa BIHal g
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Then from Proposition Lemma [7.7] and the energy coercivity bound (7.15)), we obtain

1
1Hall -t g, Sa llallirq,) + ITlaellalle @) Sa (B>,

Therefore,
IA(H)? | re-2(62,) Sa B(E®)E.
Next, we turn to the term V,,A~'A|Vp|? in . The procedure here is similar. Like with the previous
estimate, we obtain
(7.36) IVHN* =2V AT AP L2y Sa [Tl [AT ANVP) o3 g, + ANV z0-2(0,)
and also
1A= A(VpP)|

1 <
C2 () ~A B.

Moreover, by expanding A|Vp|? (and some simple manipulations), we have
”A(‘VP‘Q)HH’“*Z(Q,) S |||V2P|2||ka2(9t) + |||Ap|2||Hk*2(Qt) + VAP gr-1¢0,)-
Using Corollary [5.4] and Lemma we have for the first two terms
|||V2p|2||Hk72(Qt) + |||Ap|2||Hk72(Qt) SA HVpHC%(Qt) ||p||Hk+%(Qt) SA B||pHHk+%(Qt)
To handle the other term, we use the Laplace equation for p to write
(7.37) IVPAD| gr-1(0,) = VPOiviOjvill pr—1(q,)-
Then from (j5.1)), Corollary Lemma and Lemma 7.8 we have
IVPOiv;05vill mr-1(0,) Sa llvllwre @) [VPOiv; [l mr-1(0,) + VPOl Lo (0, V] (0,
(7.38) Sa ||U||W1>°°(Qt)(HUHC%(Qt)||pHHk+%(Qt) +[plwre @ llvll ae @)
Sa Bll(0,T)|[mx-
Combining the above with the energy coercivity ([7.15)), we obtain
1
IANVPI) 120, Sa B(E")?.

Next, we turn to the estimate for M;. We first write My = M{B where Mj is an R-valued multilinear
expression in nr, and Vp and B is an R-valued bilinear expression in Vu. We use the bilinear frequency
decomposition B(Vv, Vo) = B(Vu!, Vo<t) + B(Vos!, Vol) and consider the partition B = B} + B? where
B} = B(V<I><jvl, VosH+B(Vus!, V<I><jvl). Then using this partition, the trace inequality, energy coercivity
and Proposition [5.30] we have
(7.39)

IVHN* =2 M || 20,y Sa l|M:]|

—1rl ! j(k—3—2 2
we-i oy Il D272 B e ) +23132“ F2NBE 3 )
<a ||Ml||Hk—— ryt ||'U||le<>c(§zt)||U||C%+E(Qt)\|rt||Hk + lvllwr. @) [Vl 2x (0,
1
<A ||M1||Hk_, . + B(E*)2.

Using the same partition as above and Proposition Proposition [5.11] and Lemma [7.5] we have

1M g g,y Sa IVl @ [0l + (ITell e + (M (VP ne) e ry) 51;132‘5”3]- Lo (1)
J

+sup 203729 B2

Ly, .
§>0 H2 ()
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Estimating as in ((7.39)), this simplifies to
1
1Ml ) S BERE + BIMI(Tp, e s
By Proposition [5.9) Proposition Lemma and the energy coercivity, we have also
1M (Vp, ne ) mx-1(ry) Sa (BF)2,
from which we deduce
IVHA™ 2 My 20,y Sa BIEF)?.
Next, we estimate Ms. This estimate is similar to M;. One starts by writing My = M}B where M) is
multilinear in Vp and npr, while B is bilinear in Vv and VD;p. Using the partition B = le» + BJQ» with
B} := B(V® 0!, V(Dip)=h) + B(Vo=!, V@ ;(Dyp)') and a similar analysis to M;, we have
IVHN® 2 M| 12 (6,) Sa l0llwes @) | Deplla . + 1Dipllwo ) (Tl e + [M3(Vp,nr,) | ge-1(r,))
+ [1Depllwr @ lvll e,
Then using the W bound for D;p from Lemma and the H* bound for D;p from Lemma we have
IVHNY 2 My 120,y Sa Blog(1+ [[(v, T) ) (E¥)?.

Now we turn to the estimate for the term involving DZp. As usual, we first aim to write it in the form
A1V - f but in such a way that f involves favorable frequency interactions. This presents some mild
technical challenges as D?p will have terms which are up to quadrilinear in Vv. To deal with this, we have

the following lemma.

Lemma 7.11. There exist bilinear, trilinear and quadrilinear expressions B, T and M taking values in R?
such that

AD?p = —2A|Vp|> + V - B(VD:p, Vo) + V - T(Vp, Vv, V) + V- M(u™, VoS VuS™ VoSm).
Proof. First, using that v is divergence free, it is straightforward to verify
AD?p = 0i(0;Dyp0;v;) + 0;(0;v0;Dyp) + DyADyp =V - B+ DyAD,p.
Next, we expand D;AD;p. We start with the Laplace equation for D;p from ,
AD;p = 30;(9;pd;v;) + 0;(0;v,;0;p) + 20,;v10,v;0;v;.

Using that v is divergence free, we have the commutator identity [0;, D] f = 0;(0;v; f). Combining this with

the Euler equations, we obtain
Dy (30;(0ipd;v;) + 0;(0;v;0;p)) =V - B+V - T — 40,(0;p0;0;p)
=V -B+V- T -2A|Vp]
It remains to expand 2D;(0;v0kv;0;v;). From the Euler equation and symmetry, we have
2D (0;v0,v;0;v5) = 6Dy (0;v ) Opv;0;v; = —60;0,POKV; 0;v; — 60;v,01V10,V;0;V;.
We rearrange the first term as
—60; 0k pOkv;0;v; = —60;(0kpOKvi0;v;) + 60kP0; 0k v;0;v; = —60;(0KPOKLV;0;v;) + 30,0k (0;v;0;v;)
(7.40) = —60; (0 pOkvi0;v;) + 30k (Okp0;v;0;v;) — 30K0kpO;v;0;v;
=V-T +3|Ap|%,
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where in the last line we used the Laplace equation for p. On the other hand, for the second term, by
symmetry of the indices, we have the quadrilinear frequency decomposition,

—60;0,0,050,v;0;0; = —240;0]" O " D= D07
=V M+ 240" 0,005 " v 005" + 240] Ou " 05 0v7 " v

By symmetry and the fact that v is divergence free, the second term on the right-hand side can be rearranged
as

240" 0,0, " Opv= " O = 8" 9y (OjvE " OpvE " O ™) = V - M.
For the third term on the right-hand side, we have
240" vy " 030k v " O™ = 120005 " O (0,05 00T ™) = V - M — 12040} 00 " 050" D0 ™
(7.41) =V - M- 38kvlalvk8jvi8wj
where we used the Laplace equation for p in the last line. Combining ((7.40)) and (7.41)) to cancel the 3|Ap|?

terms then completes the proof of the lemma. O

Now, we return to the estimate for VHN*~2V, D?p. We use Lemma and estimate each term separately.
The term —2VHN*=2V,, A=1A|Vp|? can be estimated identically to (7.36). Let us then turn to the estimate
for VHN*=2V, A=Y (V-B). We use a partition B = le» +B]2 where le» is defined as follows: First, we perform
the frequency decomposition,
B = B(V(D:p)', Vo<t) + B(V(D;p)=t, Vo)
and then define
B{ = B(V@Sj(Dtp)l, V’Uél) + B(V(Dtp)él, V‘I)gjvl).
Then Corollary [5.32] and Proposition [5.19] gives
IVHA 2V, AT - B)llsaion) Sa [Blas sy + [Talme sup2 414V - B s ow s
3>

+sup 2T ATYT - B 4110,
j>0

From Sobolev product estimates and the H* and L estimates for D;p,
1
1Bl ex-100) Sa lollwr @) | Depll ) + I Depllwr @ 10l () Sa Blog(L + |[(v, T)llme) (E*)=.

Using Proposition [5.15] we also estimate

275 |ATH VY - B])llove(an Sa lIDpllwo o, 0]

CcBte

oy S Blog(1+ (0,1 12:)
Finally, using the error bounds for ®~; and the L> and H* estimates for D;p from Lemma we see that

(k—1—e _ . 1
2019 ANV B (6 Sa [ollwr o Deplis @I Depllws o [0l ) Sa Blog(L+ (0, T) e () .

Hence,

IVHA 2V, ANV - B)l| 2o Sa Blog(L + (v, T)lr-) (B¥)*.
The estimates for VHN*=2V,A=1(V-T) and VHN*~2V,A~1(V-M) are very similar. The main difference
is that we use the partition 7 = 7/ + 75 with

T? = 2T (Vp, Vo 0!, VoS!
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and the partition M = MJ + M} with
Mjl = M(vm,v¢§jv§m,VUSm,VUSm).
Ultimately, we obtain
IVHN* =2V, D3pl| 2, Sa Blog(l+ [|(v, T)l|m-) (E*)*
which when combined with the previous analysis gives
IVHA® 120, Sa Blog(1+ [|(v, Tl ) (B%) 2

as desired. The last term in the estimate for Q that we need to control is VH[N*~2 a]Na. For this, we

have the following technical lemma.

Lemma 7.12. We have the following estimate:
[VHIN®2, alNa] 20, Sa Blog(l+ (v, T) a-) (B*)2.

Proof. Thanks to the H=z(I';) — H' () bound for #, it suffices to estimate ||[N*72, a]lN | We

begin by using the Leibniz formula (5.36)) to expand the commutator,
(7.42) W2 alNa= Y N"(NaN"™a) = 2NV, A (VHa - VHNa).
n+m=k—3
We focus on the latter term in ([7.42)) first as it is a bit more delicate to deal with. To simplify notation
slightly, we write

HE(T,)

aj:=HN?a, F:=Vay-Vani1, Neji=nr, VO ,H, Nsj:=nr, Vs,H.
Using Corollary and then Proposition we have
HN”(VnA*IF)HH%(m SallFmn ) + 1Tl e §1>110>27j(m+3)||A*1FJ.1||W1,00(Qt)
+ sup 2j(n+176)‘|A71F]'2‘|H1(Qt)7
§>0
where F' = F jl + F j2 is a suitable partition of F' to be chosen. To find a suitable partition, we start with a

l.

bilinear frequency decomposition similar to before. We define a; := ®ia; and ajSl = dqa;.

Remark 7.13. We note that the regularization operator ®<; does not preserve the harmonic property of
a;. However, using the definition of ®<; (see Section @, the operator defined by C<; := [A, §<] is readily

seen to satisfy the bounds,
(7.43) IC<tllcasre $a 207 ||C<tllgaspz S4 207, 0<a<1
for a,1 > 0. That is, C<; behaves like a differential operator of order 1 localized at dyadic scale < 2°.

Now, using the same convention as before in this section (where repeated indices are summed over) we have
_ l <l <i l . "
F=Vay-Va, 1+ Vag -Va, = F +F".

We can write F” and F” to leading order as the divergence of some vector field. Using that ag and a,,+1 are
harmonic, we have
F' =V (ahVas' ) — ahCelamr = G' + H',

(7'44) 1 l <i l 1 "
F" =V -(a,,,1Vag') — a,,1C<iag = G" + H".
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We will focus on F’ first. To choose a partition of F’, we need to choose a suitable partition of G’ and
H'. We show the details for G’ and remark later on the minor changes needed to deal with H’. We write

G' = (G")j + (G")} with
(G/)]l =V. (aév(bgamﬂ,g), Am+1,<j = @Sj(HN;"jﬂa).

From Proposition [5.15] iterating the maximum principal and using the C“ bounds for H and the properties
of @, we have
i(ma+3 _
277D | ATHE) w2y Sa lal

CE(Ft) ||a||C%(Ft) SA B7
where we used Lemma (7.5 and Lemma [7.9|in the last inequality. For (G’)3, we can write
<i <i
(G")F =V - (agVby )+ D V- (agVb))
0<i<m
where
byl =0 ®sjamyr, by =@ HNL NS N™ .,
Using Corollary the properties of the kernel ® and the H~! — H'! bound for A~!, we obtain for each
0<i<m,
2/ ATIV - (ah VOED 11 (e Sa 27T lab | ) 1657 11 20)

(745) < j(n+1—e¢) Nz N ‘Nm—i
$a 201 all Ly M N Al

|H%+€(Qt)'
Repeatedly using the H® — HzT¢ estimate 1l the properties of ®, the bound ||nr, |
trace inequality, we can estimate

2= | HNL N5 Nl

ce(r;) Sa 1 and the

|H%+€(Qt) <a i (n+1+i—c) ||V(I)ZJHNm_ia“H%+E(Qt)
SA ||HNm—ia||Hn+i+% @)
Using Proposition Lemma Lemma[7.7 and (7.15)), we have
m—1 1
M0l v ) S allzeosey + I lallonry Sa (B9)2.
If n > 1, then doing a similar analysis for the term V - (a}, V=" +1,;) and combining this with (7.45) and the
bound ||a||C%(Ft) <4 B, we obtain
(L) (A — 1
20 ATHE) () Sa B(EY)=.

If n =0, the term V - (af)ngl ) is instead treated slightly differently. For this, we estimate similarly to

m+1,5
before,
(- _ I o<l
2](1 e)HA ly . (aOVb;L_’_Lj)HHl(Qt) SA ”a”C%(Ft)”HNm+1a||H%(Qt)'
Then we use Proposition to estimate the last term as

||7‘1Nm+1a |Nm+1a||H1(Ft),

: <
I3y 54|
and then estimate this term by (Ek)% similarly to the above. Next, one readily verifies analogous bounds

for H', G"” and H" by using the similar decompositions,

(7.46)  (H")} = —ahCxi(amir,<j),  (G")} =V (@ams1,<5)Vag'), (H")} = -Ccia0®i(am1,<;).

From these bounds, ultimately, we obtain

IV (VAT )y ) S I F o, + BOES) .
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It remains to estimate F' in H™. We begin by looking at each summand in the bilinear frequency decompo-
sition for F',
Fy :=V®a - V@glam_H + V(I)SZQO -V®am41.

For the latter term, we have

IV@<iao - VO1amrllam oy Sallall oy llamsall gurg g

which when n > 1, we know from the above can be controlled by B(Ek)%. For n = 0, we have the same

bound by simply using Proposition For the other term, we can further decompose

1 2
(7.47) Am+1 = Q1,0 T Qg1

where a,, |, = HN ' a. We then have from the properties of ®<; and the control of | Hal| by

Hn+7n+% (Qt)

the energy (as above),
1

k
IV@ia0 - VO <iamirllin iy Sa llall g p, (B2
As Va,, 41 is not at top order, we can easily verify using the decomposition above that we also have the
following cruder bound for each [

(7.48) 1El 2y Sa 27 (0, T)llfe (B2,

for some integer > 1 and small constant § > 0. Arguing as in Lemma [7.9] we can combine the above two

bounds to estimate
1P|l () Sa Blog(1+ [|(v,T)||me) (B*)2.

This handles the latter term in ((7.42). Now, we turn to the first term. We have to estimate [N (NaN™T1a) [ o)
t
where n,m > 0 and n +m = k — 3. Here, we only sketch the details as the procedure for this estimate is

relatively similar to the previous term. We start by writing
NaN™a = (Hnr, - Vao)(Hnr, - Van) = Kir, .
Then we apply Proposition [5.30] and Proposition [5.11] to estimate
IV K|

—i(m+3)) ! j(n+5—2€) || )2
Sa 1@ + 1Tl sup 277 K e ) + 5up 222 0K v

H3 (T})
where K = K]l + K]2 and
(7.49) Kj = ®;((Hnr, - VO a0)(Hnr, - VO ,HNa)).
Similarly to the above, we can estimate

27| K] |1 (0,) Sa B.
We also have an estimate of the form

PTG 1 ) Sa IE @) + BER) + 20 79|B(VEs jao, V)| 20,

SA 1K || g1 () + BEF)E + sup 2/ (179 B(V a0, Vam )| r2(a,)
>0

for some bilinear expression B. Using a decomposition of a., similar to ((7.47)), we have
2/ B(V®ia0, Vam) | p2(0,) Sa Blog(1+ [|(v,T)]lae) (EF)2.
Therefore, we have

n 1
IN*Kie, |l 3,y Sa Blog(l+ 10, D)ll12=) (B*)2 + [ K |10,
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To estimate K in H""1(£2;), the starting point is similar (but slightly more technical) than the estimate for I
in H™ from above. The idea is to do a quadrilinear frequency decomposition for K and study each summand
individually. The relevant terms correspond to terms essentially of the form (®;Hnr, - V®<ja0)(®<;Hnr, -
V@Slam) and (‘I)Sﬂ'[nrt -V(I)lao)(':bgﬂ'[npt -V@Slam) and (‘bgﬂ'[nrt -V@Slao)((ﬁl?—lnpt . V@Slam) and
(< Hnr, - VO<ja0)(P<Hnr, - V@®ia,,). The second and fourth terms can be handled almost identically to
the estimate for F' in H™ (as by the maximum principle, one can dispense with the factors of Hnr,). The
first and third terms are handled similarly by decomposing ag and a., into low and high frequency parts
as in and using Proposition when ®;Hnr, is at high frequency compared to the other factors.
One then obtains the desired estimate similarly to the estimate for F' in H™ above. We omit the remaining
details. O

We now turn to the estimate for the final source term, R = [Dy, N*71]a in L?(T';). To control this term, we
first write

[Dy, N*"Ya = [Dy, NIN* 26 + N'[Dy, N*~2a.
For the latter term, we have by Lemma
INIDe N 2al 20y Sa D N 2al gy
Then using Proposition and the coercivity bound, we estimate
I[Ds N 2lallarr,y Sa lvllws=@ollallms-rwy + lall oy ., I zx + 01 ms@0) + lalls @ [Vl @) [T
Sa BEY)2.

To conclude the proof of Theorem it remains to estimate [Dy, NJN*~2q in L?(T"). This term is rather
delicate due to the lack of a trace estimate in L?(T"). To deal with this term, we have the following proposition.

Proposition 7.14. Let s € R with s > g + 1. Then we have,
(7.50) IV, D] fll2ry Sa Blog(L+ [[(v, D) [me) ILf | 112 (-
Our proof requires the following short lemma which is essentially a consequence of Proposition [5.18

Lemma 7.15. For eachl =1,...,d, we have

(751) an . (VA’lé)l — el)HH%(Q)aLz(F) /SA 1.
Proof. This will follow by interpolation if we can prove
(7.52) e - (VAT0 — Dl g2yt Tl (VAT Ol gy3+5@)smsry Sa 1

for some 0 < § < e. The Hz™0 — H® bound follows easily from the trace inequality, the bound
Inr, |lcer,) Sa 1 and Proposition For the L? — H~2 bound we use duality. Indeed, let f € L2(1).
Since (VA™19; — ¢;) f is divergence free, we have

[one (Va0 —epfas = [ Vg (VA0 - e fdz Sa lllgy g 1100
r Q

for every g € H %(I‘). Therefore, we obtain lb and thus also 1) O
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Proof of Proposition[7.1]} Now, returning to the proposition, we expand using ([5.40)),
[Di, Nf = Dynr - VHS —np - (Vo) (VHF)) +nr - VAT A(v - VHS).

The first two terms on the right can easily be estimated in L? by the right-hand side of ((7.50]) by using (5.35))
and Lemma Now, we turn to the latter term. We write for simplicity v := Hf. We then split u as

U = E Qu+ b5 yu = E U+ U,
1<lo 1<lo

where [y is a parameter to be chosen. Note that wu; is not harmonic anymore, but it is to leading order. As
usual, we also write the corresponding divergence free regularizations for v as v; := Vv, v<; := ¥ ;v and so
forth.

The following lemma shows that we have a suitable estimate when u is replaced by a single dyadic regular-

ization ;.
Lemma 7.16. For each | € Ny, we have
VA AT A - V)l L2y Sa Bl oy,
where the implicit constant does not depend on 1.
Proof. We write
(7.53) VAT A0 - V) = Vo, AT A(vgg - V) + Vi AT A(vsy - V).

For the second term, where v is at high frequency, we use the identity A™'A = I —H and the H' — L?

bound for N to estimate

(7.54) IV AT A (031 - V)l 2y Sa IV (031 V)| L2y + oz Vaul ey
For the first term in , we distribute the derivative to obtain

(7.55) IV (031 - V)l 2y S BlIVuill g2y + lvsi - V|| L2y

For the first term in ((7.55)), we use the variant of the trace theorem leading to (4.8) and the fact that wu; is
frequency localized to obtain
1 1
1Velz2cey < 19l sy IVl sy S el S0 s
where in the last estimate we used Proposition For the second term in (7.55)), we again use the trace

theorem and the fact that v>; is higher frequency to obtain

1 1
oz VEull 2wy S lose - Vil Za g lose - Vil o) S Blull g o) S Bl fllar).

The term |[vs; - Vay||grry in (7.54) is similarly estimated. For this, we only need to estimate ||V (v -
V)| z2(r), and this is handled by an almost identical strategy to the above.
Now, to estimate the term in (|7.53|) where v is at low frequency, we distribute the Laplacian and use that

v is divergence free to write V,,A™1A(v.; - V) as a sum of terms of the form

VnA_18j<D’U<lDul> —+ VHA_laj (v<lClu)7
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where Cju := [A, &;]u. Using Lemma we can then estimate

||VnA71A(’U<l . Vul)||Lz(p) ,SA HD’U<1DU1” + ||v<lC’lu|| =:J; + Jo.

L2(D)NH 2 () L2(T)NH? (Q)

Using that v is at low frequency, we can estimate similarly to the above,
Ji Sa Bl fllm)-

For J,, we note that Cj is an operator of order 1 and still retains essentially the frequency localization scale

of 2!. Therefore, we can estimate J, similarly. This completes the proof of the lemma. g
Returning to the proof of Proposition [7.14] we now estimate using Lemma [7.16}
V2 AT A - V) || 2y Sa loBlf i) + Ve AT A - Vusg,) | 20y

Again, using that v is divergence free, we can (as above) expand V,,A71A(v - Vus;,) as a sum of terms of

the form
VaA78;(DvDusy,) + VA7, (vC<yyu),

where C<jyu = [A, @<, ]Ju. For the latter term, we can simply estimate as above (since v is undifferentiated),

IV A0, (vCtyu) || L2y < Y VAT 0;(0Ct) | L2(ry Sa loBIf | (ry-

1<lo

For the other term, we use Lemma [7.15] to obtain
V2 A710;(DvDusziy)2(r)y Sa Bl Duzy |2y + [1DvDusiy |5 -
Since u is harmonic we have
B||Duzi, | L2ry Sa Bllfllz @y + Bl[Du<i || L2 (r)-

Then expanding u<;, = »_;;, w and using the trace theorem leading to (4.8) for each term as above, we
get

Bl Duzy, |2y Sa Bloll fllm(r)-

Finally, by product estimates and Sobolev embedding, it is easy to bound

1DvDuzioll 3 o) Sa Bllflla @y + D021l g e o Il ) Sa (B + 271 (v, D) ll1z) 1 sy

for some ¢ > 0. Then choosing Iy =5 log(1 + ||(v,T")||z1=), we conclude the proof of the proposition. g

Finally, we conclude the proof of Theorem by observing first from the above proposition that we have
I[De, NIN*=2a] 2 (ry Sa Blog(1 +[|(v, 1) ||s)

Then, using Proposition Lemma Lemma and , we have

IN*=2a)| g1y Sa (EF)3.

|Nk726l||H1(r)-

This finally concludes the proof of Theorem [7.1
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8. CONSTRUCTION OF REGULAR SOLUTIONS

In this section, we give a new, direct method for constructing solutions to the free boundary Euler equations
in the high regularity regime. Solutions at low regularity will be obtained in the next section as unique limits

of these regular solutions.

Previous approaches to constructing solutions to free boundary fluid equations include using Lagrangian
coordinates, Nash Moser iteration or taking the zero surface tension limit in the capillary problem. A more
recent approach in the case of a laterally infinite ocean with flat bottom can be found in [47]. The article
[47] uses a paralinearization of the Dirichlet-to-Neumann operator and a complicated iteration scheme to
construct solutions. In contrast, we propose a new, geometric approach, implemented fully within the Euler-
ian coordinates.

Our novel approach is roughly inspired by nonlinear semigroup theory, where one constructs an approximate
solution by discretizing the problem in time. To execute this approach successfully, one needs to show that
the energy bounds are uniformly preserved throughout the time steps. In our setting, a classical semigroup
approach would require one to solve an elliptic free boundary problem with very precise estimates. However,
on the other end of the spectrum, one could try to view our equation as an ODE and use an Euler type
iteration. Of course, a naive Euler method cannot work because it loses derivatives. A partial fix to this
would be to combine the Euler method with a transport part, which would reduce but not eliminate the loss

of derivatives.

Our goal is to retain the simplicity of the Euler plus transport method, while ameliorating the derivative
loss by an initial regularization of each iterate in our discretization. In short, we will split the time step into

two main pieces:

(i) Regularization.

(ii) Euler plus transport.

To ensure that the uniform energy bounds survive, the regularization step needs to be done carefully. For
this, we will take a modular approach and try to decouple this process into two steps, where we regularize
individually the domain and the velocity. We believe that this modular approach will serve as a recipe for a

new and relatively simple method for constructing solutions to various free boundary problems.

The overarching scheme we employ in this section was carried out in the case of a compressible gas in [27].
While we follow the same rough roadmap here, we stress that the main difficulties in the incompressible
liquid case are quite different than for the gas. One obvious reason for this is that the surface of a liquid
carries a non-trivial energy. Also, we introduce another new idea here, which is to begin the iteration with
a regularized version of the initial data, and then to partially propagate these regularized bounds through
the iteration.

8.1. Basic setup and simplifications. We begin by fixing a smooth reference hypersurface ', and a collar
neighborhood A, := A(T., €, d). Here, as usual, ¢y and ¢ are some small but fixed positive constants. Given
k > % + 1 sufficiently large and an initial state (vo,I'g) € H¥, our aim is to construct a local solution

(v(t),T;) € H* whose lifespan depends only on the size of ||(vo, )|+, the lower bound in the Taylor sign
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condition and the collar neighborhood A,. We recall from Theorem [7.1] that we have the coercivity
L+ (0, D)lffge ~a B*(v,T)

for any state (v,T') € H*. For technical convenience, we will work with the slightly modified energy,

(81)  E%u,T) = [IVHN* (a7  Dya)l|2(q) + o™ 2N al| 2oy + w31 ) + 011220y + 1.

This new energy is readily seen to be equivalent to the old one in the sense that

(8.2) ER(v,T) ~4 E*(v,T).

The primary reason we modify the energy is that it will allow for cleaner cancellations in the energy when
we later regularize the velocity.

Now, fix M > 0. Given a small time step € > 0 and a suitable pair of initial data (vy,Tg) € HF with
| (vo, Do) ||+ < M, we aim to construct a sequence (v.(je), [c(je)) € H¥ satisfying the following properties:

(i) (Norm bound). There is a uniform constant ¢y > 0 depending only on A,, M and the lower bound
in the Taylor sign condition such that if j is an integer with 0 < j < coe™!, then

“(ve(je)are(]e))||Hk < C(M)a

where C'(M) > 0 is some constant depending on M.
(ii) (Approximate solution).

ve((j + 1)e) = ve(je) — €e(ve(je) - Voe(je) + Vpe(je) + gea) + Ocr(€?)  on Qe((j + 1)e) N Qe(je),
Vv ((j+1)e) =0 on Q((F+ 1),
Qe((G + 1)e) = (I + eve(je))(Qe(je)) + Oca (€%).
We will not have to concern ourselves too much with the Taylor sign condition in this section as we are
working at high regularity and this is a pointwise property. In particular, we will suppress the lower bound

in the Taylor sign condition from our notation. A nice feature about the above iteration scheme is that it
suffices to only carry out a single step. For this, we have the following theorem.

Theorem 8.1. Let k be a sufficiently large even integer and M > 0. Consider an initial data (vy,To) € H*
so that ||(vo, To)|lar < M and vy and wy satisfy the initial reqularization bounds

(8.3) [voll i1 (00) < K(M)e™ s lwoll mrrn ) < K'(M)e™ 77,

for n = 0,1, where K(M), K'(M) > 0 are constants, possibly much larger than M, such that K'(M) <
K(M). Then there exists a one step iterate (vo,Lg) — (v1,T'1) with the following properties:

(i) (Energy monotonicity).
(8.4) E¥(v1,T1) < (1+ C(M)e)E(vg,To).
(i) (Good pointwise approzimation).

v1 = vg — €(vg - Vg + Vpo + geq) + Oci(€2)  on Q1 NQ,
(8.5) Vv =0 on Q,
Ql = (I + GU())(Q(]) + Ocl (62).
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(iii) (Persistence of the regularization bounds). vi satisfies the regularization bounds
(8.6) [orll sy < KM)e™ [willgrin,) < (K'(M) +C(M)e)e ",
forn=0,1.

Remark 8.2. Property ensures that v; retains the H**! regularization bound with the same con-
stant compared to the first iterate, and w; has a regularization bound which can only grow by an amount
comparable to € times the initial regularization bound, which is acceptable over ~2;; e~ ' iterations. The
energy monotonicity property, along with the energy coercivity bound from Theorem will ensure that the
resulting sequence (v.(je), [c(je)) of approximate solutions we construct remains uniformly bounded in H*
for j < €7 1. The second property in Theorem [8.1| will ensure that (v.(je), Tc(j€)) converges in a weaker

topology to a solution of the equation.

The assumption for vg is for technical convenience. In the regularization step of the argument, it will
allow us to decouple the process of regularizing the domain and regularizing the velocity into separate argu-
ments (see Lemma in the next section). The condition ensures that can be propagated from
one iterate to the next. Assuming that the initial iterate satisfies is harmless in practice. Indeed, by the
regularization properties of ¥<.—1, we can replace the first iterate in the resulting sequence (vc(je), I'c(je))
with a suitable ¢! scale regularization so that the base case is satisfied. We note crucially that such a reg-
ularization is only done once - on the initial iterate - as we only know that this regularization is bounded on
HF (it does not necessarily satisfy the more delicate energy monotonicity). In contrast, we require the much
stricter energy monotonicity bound for all other iterations as in the above theorem. The condition on
the vorticity in can also be harmlessly assumed for the initial iterate. When we later regularize the
velocity, we will not regularize the vorticity, but rather only the irrotational component. This is why, in
contrast to the H**! bound for vy, the constant for w; in gets slightly worse. Nonetheless, the careful
tracking of its bound in ensures that it only grows by an acceptable amount in each iteration. The
heuristic reason why the regularization bound on w; is expected is because the vorticity should be essentially
transported by the flow, and therefore should not suffer the derivative loss of the full velocity in the iteration

step.

Outline of the argument. We now give a brief overview of the section. The first step is selecting a
suitable regularization scale. To motivate this, we recall that the evolution of the domain and the irrotational

component of the velocity is essentially governed by the following approximate equation for a:
(8.7) D?a ~ —aNa.

Therefore, heuristically, D; behaves roughly as a “spatial” derivative of order % To control quadratic errors
in the energy monotonicity bound in the Euler plus transport iteration later, it is therefore natural to attempt
to regularize the domain and the irrotational part of the velocity on the ¢! scale, as we do in Theorem [8.1
As the vorticity is essentially transported by the flow, we are able to leave the rotational part of the velocity
alone, and instead track its growth as in .

With the above discussion in mind, we begin our analysis in earnest in Section by regularizing the do-
main on the ¢! scale. More specifically, given (vg, I'g) € H* with v, satisfying (8.3)), we construct for each
0 < € < 1 a domain Q. C Qg whose boundary is within O¢1(€?) of Ty and which satisfies the regularization

bound ||T¢||frr+e Sme € * for all @ > 0. This is achieved by performing a parabolic regularization of the

~
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graph parameterization 79 on Iy, together with a slight contraction of the domain. We then define our new
velocity 99 = Tp(€) by restricting the old velocity vy to the new domain .. As will be the case in every
step of the argument, the main difficulty is to carefully track the effect of the regularization on the energy
growth. The main point in this part of the argument is to show that the parabolic regularization of g
induces a corresponding parabolic gain in the surface component of the energy [la~ 2\ F=lal2, (r)» allowing

us to control all of the resulting errors.

With the domain now regularized, we move on to regularizing the velocity in Section which is step 2 of
the argument. In this step, we leave the domain and rotational part of the velocity alone, and regularize the
irrotational part of the velocity on the e~! scale. The way we execute this is by using the functional calculus
for the Dirichlet-to-Neumann operator. The main difficulty in this step of the argument is in tracking the
effect of this regularization on the |VHN*~2(a"'D;a)%, (o) bortion of the energy, which at leading order
controls the irrotational component of the velocity. An additional objective in this step of the argument is
to improve the constant in so that we can ultimately close the bootstrap in the upcoming Fuler plus

transport phase of the argument.

The final step in our construction is to use an Euler plus transport iteration to flow the regularized variables
(ve,T'¢) along a discrete version of the Euler evolution. It is in this step of the argument that we expect to
observe a % derivative loss (see the equation for D?a, for instance), which is why the above regularization
procedure is imperative. The Euler plus transport argument we employ is carried out in Section Control
of the resulting energy growth is shown by carefully relating the good variables a, D;a and w for the new
iterate to the corresponding good variables for the regularized data. Then, with the energy uniformly
bounded and the variables appropriately iterated, in Section we conclude that our scheme converges in

a weaker topology, completing the construction of solutions.

8.2. Step 1: Domain regularization. We begin with the domain regularization step. For this, we have

the following proposition.
Proposition 8.3. Given (v, T) € H* with vy satisfying (8.3), there exists a domain Q. contained in Qq
with boundary T'c € A, such that the pair (Uomg ,Te) satisfies
(i) (Energy monotonicity).

(88) gk(U0|sze’F6) < (1 + C(M)€)5k<vo,ro).

(i) (Good pointwise approximation).
(8.9) Ne =10 + Oc1(€2) on T,.

(iii) (Domain regularization bound). For every a > 0, there holds,

(8.10) IPell e Sara €

Proof. In the sequel, we will use vy as a shorthand for vy, . To regularize I'g, we begin with the preliminary
parabolic regularization of 7y given by

e = e Are g,
where Ar, is the Laplace-Beltrami operator for I',. The rationale for using the operator e’ Ar. instead of,
for instance, the operator e ¢Pl is to ensure that when k is large enough, we have 10Tl are—2r.y S e

This ensures that the hypersurface parameterized by 7 in collar coordinates is at a distance on the order of
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no more than Oy (€?) from I'y in the H*~2 topology (and thus the C! topology if k is large enough). We
would also like to additionally guarantee that (). is contained in €2y, so that we can use the restriction of
the velocity vy to €. as the velocity on the new domain. Therefore, we slightly correct the above parabolic

regularization by defining our regularized hypersurface I'c through the collar parameterization
Ne = ﬁe - C€2a

where C' is some positive constant depending on M only, imposed to ensure that the domain €2, associated
to I'c is contained in €. Clearly, 7. satisfies (8.10) and the required pointwise approximation property in
(8.9). The main bulk of the work in this step of the argument will therefore be in understanding how the

above parabolic regularization of the surface (and also the restriction of the velocity to £2¢) affects the energy.

Given (99, T) as above, we define the associated quantities @y := V X ¥y and pg, D:po, o and D:ag on 2.
and I'c by using the relevant Poisson equations, as in Section[7.1]] We will use the notation N, to refer to the
Dirichlet-to-Neumann operator for I'.. Before proceeding to the proof of energy monotonicity, we note that
the above construction gives rise to a flow velocity V; in the parameter € for the family of hypersurfaces I'.
by composing d.n.v with the inverse of the collar coordinate parameterization x — x + n.(z)v(z). We may
harmlessly assume that V. is defined on 2. by harmonically extending it to Q.. We use D, := 9. + V.-V to
denote the associated material derivative, which will be tangent to the family of hypersurfaces I'..

We also importantly make note of the fact that for every s € R, we have

(8.11) l@ollas ) < llwollzsy,  Nollas ) < llvollms )

Therefore, the bounds in (8.3]) are retained from the initial data and, moreover, the rotational component of

the energy does not increase.

Now we turn to the energy monotonicity bound (8.8). We will need the following two lemmas.
Lemma 8.4 (Material derivative bounds). The following bound holds uniformly in €:
(8.12) 1DV | rr-1(0.) Sm 1

Lemma 8.5 (Variation of the surface energy). Let k be a sufficiently large even integer. Then we have the

following estimate for the ag component of the energy:

d, -1 ..
Ze a0 ENE T aol| 7o,y S —€llTellFaen + Onr(1).

Lemma [8:4] will allow us to essentially ignore any contributions to the energy coming from the restriction oy,

while Lemma [8.5 will help in controlling the variation in € of the irrotational components of the energy.

Before proving the above lemmas, let us see how they imply the energy monotonicity bound (8.8). Thanks
to Lemma and (8.11]), we only need to study the D;a component of the energy. For this, we recall from
the Laplace equation (7.4]) that we have

(8.13) g 'Dyao = g 'nr, - Vg - Vo — g 'nr, - VAG (AT - Vg + 4tx(Vfo - Vi) + 2tr(Vg)?)  on T.
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We apply D.VHNF72 to (8.13) and distribute derivatives. We first dispense with the commutator. Using
the standard H2 (T'.) — H* () bound for H,, the H*~3(T'.) to Hz(I'.) bound for N*~2 from Proposi-

tion and the Hz2 (I'.) — H'(Q.) bound for [D,, H,] from (5.39), we have

I[De, VHNE?)(ag " Dedio)l| 22 (2, Sar 1D, N7 (@g " Dedo) | + llag* Dedol|

HY () H= 3y’

Then, using the formula (5.43)) and the elliptic estimates in Sectionas well as the bound ||Ve[| gr—1(r,) Sar 1,
it is straightforward to verify the commutator bound

k—2
||[D€7N€ ]HH}C*%(FE)%H%(FE) SM 1
By elliptic regularity, ||@61Dta0“w%(r | is O (1). Hence, we obtain

”[DevVHeMk_z](dalDtdO)HL2(QC) SM 1.

Using that

||VHeMk_2D6(aalDta0)HL2(Q€) Sm ||De(661Dt&0)||kag(FE),

it remains now to estimate ||D(ag 1Dt€l0)|| For this, we distribute the operator D, onto the various

H*3 (T,
terms in (8.13). To expedite this process, we collect a few useful bounds. First, using Lemma u the trace

theorem ensures that we have the bound

1DVl yig ) + 1DVl e S 1.

Using the identities for [Ag:, D.] and Denr, in Section the Laplace equation for p., and the fact that
Ve is harmonic, we also readily verify the bounds

(8~14) ”DeﬁO”HkJr%(Qe) + ||‘D€nFe
and
1De, Vg Myt oy + IDeoll ey gy Sae 14 IVl oy -
From the above bounds and ({8.13)), we obtain the estimate
||DE(&alDtdo)Hkag(Fe) Sm 1+ HVEHHk,%(Fe).

The term ||V; ”H"” r) does not contribute an Oyr(1) error, as it “loses” half a derivative. However, from

the definition and regularization properties of V., we have
1
”VLHH"’%(FE) Sy 1+ €2 |nell grerr.y-
Hence, using Proposition [2.3] and Cauchy-Schwarz, we obtain
d Lo .
aHVHeNf 2(ag ' Deio) 112,y Smr 1+ do€l|Tel[Frusa,

where Jy > 0 is some sufficiently small constant. Using the parabolic gain from Lemma we notice that
the latter term on the right-hand side is harmless as long as dp = (M) is small enough.

It remains now to establish the two lemmas. We begin with Lemma which is quite simple.
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Proof. Since 0.9y = 0, we have
DNty =V, - VViy.

Then we use [|V]| Sum e and ||V

H 5 (@) " (@)
(8.3); namely, [lvol| gr+1(a,) < K(M)e™!, to estimate

DV ol mrr-1(0.) Sar IVell

<wm 1 together with the inductive bound for vy from

-3 10l + Vel ae-1a G0l o) Sar 1.

This completes the proof of Lemma O

Finally, we come to establishing Lemma which is where the bulk of the work will be. We begin by

establishing the following representation formula for the good variable N*~1ag:

(8.15) NEag = (—1)"a AL ke + Re,

€

where k. is the mean curvature for I'c, 2m = k — 2 and R, is a remainder term satisfying the bounds

(8.16) IRl oy + €2 I Bell ey + IDeRell2r,y Sar 1.

H3 (T
The importance of will be clear later. Roughly speaking, (8.15)) states that to leading order N*~ 1, has
a convenient local expression. Such an observation will facilitate the use of local formulas later on, consistent
with our choice of domain regularization. Observe also that in , we have D.R. = Opz>ry(1). This

is stronger than the expected bound D R, = O (1). The reason for this improvement is the bound

1
H™2(T)
(8.12)) for D.V¥p; this term would have had to have been treated more carefully if we had attempted to

regularize the velocity in this step of the argument.

Proof of (8.15)). In the following analysis, R, will generically denote a remainder term satisfying (8.16[) which
is allowed to change from line to line. Likewise, R, will denote an analogous remainder term but with

(8.17) R=0_,s €2R. = Op-1r,)(1),  DeRe = Opr—zp,(1).

N
—
=
a
—
—~
—_
~—
=

To establish (8.15]), we begin by relating N g to the mean curvature. Indeed, from Ar,p; = 0 and the
formula

Apolr, = Ar, po — kenr, - Vo + D*po(nr,, nr,),

we have
aoke = —n;n;0;0;po + Apo
= —n;n;0;0;po — tr(Vip)?
= —n;n;0;0;p0 + Re,
where in the last line, we used Lemma to check the remainder property for DR, and the inductive
assumption and interpolation to control €z2R, in H k=1(T.). We now further expand using the Laplace

equation for po,
—n;nj0;0;p0 = njNe(njag) + njnr, - VAéj(?jtr(Vﬁo)Q
= n;N(n;ao) + Re.
Next, we expand
njNe(njao) = Nedo + donyNenj — 2njnr, - VAGH(VHen; - VHeao)
= N.do + aopnNenj + R.
= N.ao + R,
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where in the first equality, we used the Leibniz rule (5.36)) for V.. From the second to the third line, we used
the Leibniz rule again, and that N.(n;n;) = 0. In summary, what we have so far is the identity

(8.18) N.ag = aoke + Re.
The next step is to obtain the leading order identity,
(8.19) NFag = aoNF~?(ag ' Neao) + Re

by applying N*~2 to M.ap and then commuting ag ! with NPF=2_ Here, R, can be seen to satisfy the required
bounds through the use of the various commutator identities for D, listed in Section [5.6|as well as the Leibniz
rule (5.36]), the elliptic estimates in Section [5| for A, and the estimates in (8.14)).

Before proceeding further, we recall the formula

(820)  —(Ar, + N2)f = keNef —2np, - V(=Aq,) " (VHenr, - VPHf) — Nenp, - (Nefnr, + V' f)

from [41, Equation A.13]. Also, we recall from (4.23) of [4I] the commutator estimate

(8.21) 8e Dl o2 S Vel ey,

Then, given that k — 2 = 2m is even, applying 7 and iterating m times, we have
NEag = aoNF2(ag 'Nedo) + Re = (—1)™ao AT (g 'Nedo) + Re = (—1)™ao AL ke + Re,

)5]\/]1, ISSSk’—l

where by straightforward (but slightly tedious) computation we verify that the remainder term R, has the

needed bounds through the use of the various commutator identities for D, listed in Section [5.6| as well as

the above estimates (8.18])-(8.21]), the relevant elliptic estimates in Section [5{ and (8.14]). O

Now, we are ready to establish the differential inequality in Lemma [8.5l For the sake of clarity, let us
begin by assuming that the reference hypersurface is given by {z4 = 0} and that T, is literally given by
g = Ne(21, ..., xg—1). Then the mean curvature and Laplace-Beltrami operator take the form

A 9i1e0jne0;0;me
L+ Vo) (14| Vne?)?

Ke

and

1 .
8.22 Arf=—— (g7 1+ NP0 ),

where (¢g¥) = (0i; —l—@meajne)_l. Observe that g¥/ and V7, are one derivative more regular than x.. Therefore,
by making use of the identity 0.n. = 2eAr, 7. and the regularization bound (8.10)), we can differentiate in €
and commute 2eAr, with these coefficients to obtain,

(8.23) (De(NE1ag))s = 2(=1)"eAr, (a0 AT ke)« + Orzr,) (1),

where we define f.(z) := f(x + n.(z)v(z)) for a function f defined on I'.. Moreover, by an exercise in local
coordinates, the reader may check that (8.23), as written, is valid for general reference hypersurfaces T',.
Now, using (|5.41)), the bounds for R, and Cauchy-Schwarz, it follows that

d, 1
2o N Yaoll720,) Sm 1—e€ll|D

2
r.( fne’fe)*”m(r*)v
where |D|r, = (—Ar.)2. To conclude, we now only need to show the coercivity type bound

Ml rrrr.y Sar L+ [[|Dlr, (AF £e)« L2, )-
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For this, we begin with Proposition [5.22] which yields

[Mell e,y Sar 1+ (|Kellge—(r,)-

Then, using (8.22)) and the fact that 2m = k — 2 (this being relevant for ensuring domain dependent implicit

constants are at most Oys(1) in size), one can easily verify the ellipticity bound

l6ellae— oy Sm 1+ [[AF kel g,y Sm 1+ [[|D

r.( EH)*HL?(F*)-

This concludes the proof. O

8.3. Step 2: Velocity regularization. Now, we aim to regularize the velocity ¥y on the e~! scale, which
will help us to improve the regularization constant in . This will be needed to compensate for the
losses in this constant in the upcoming transport step of the argument. Thanks to the previous step, we
are reduced to the situation of regularizing on a fixed domain which has boundary regularized at the e !
scale. To perform this step of the regularization, we decompose the velocity 7y into a rotational component
which is tangent to the boundary and an irrotational component. Roughly speaking, we will then regularize
the irrotational component of vy and leave the rotational component alone. We will then reconstruct the
regularized velocity using the regularized irrotational part and the original (not regularized) rotational part
of ¥g. The precise procedure for doing this will come with some slight technical subtleties due to the fact
that the normal to the surface is half a derivative less regular than the trace of the velocity on the boundary.
We will outline these nuances in more detail shortly. Heuristically, the reason it is unnecessary to regularize
the rotational part of ¥y in this construction is because the vorticity will not lose derivatives in the transport
step of our argument later. In other words, the vorticity bound in is expected to only worsen by an

Ou(1) error when measured in H* and an Ops(e~1) error when measured in H**!, which is acceptable.

Proposition 8.6. Given the pair (0o, L) from the previous step, there exists a reqularization v — ve defined

on Q. which satisfies:

(i) (Energy monotonicity).
EF¥(ve,Te) < (1 + C(M)e)E¥(To,Te).
(i) (Good pointwise approzimation,).

ve = Vg + Ocn (62),

(8.24)
V.ve =0.
(i1i) (Regularization bounds). For each n = 1,2 and K (M) large enough, there holds
1 —-n
(8.25) Hve||Hk+n(QE) < ZK(M)E .

Remark 8.7. The bound in (8.25)) with n = 1 ensures that the constant in (8.3]) is improved at this stage.
The H**+2 bound will be needed to close the bootstrap in the final Euler plus transport step of the iteration
in the next section because this step loses derivatives for the velocity.

Proof. We begin by recalling the rotational/irrotational decomposition of 9y from Appendix A of [41]:
T := U5 + T,
where for a divergence free function v, we have v'" := VHN_1(v - nr,). Naively, we would like to directly

regularize the irrotational part of ¥p. However, this does not quite work because the normal np, is half a

derivative less regular than the trace of ¥y on I'.. To get around this, we will regularize the irrotational
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part of a suitable high frequency component of v5. More precisely, let us consider a subregularization v_

of 7y, defined by v_ := \I/< ,%’DO, which lives on an €2 enlargement of .. We then define w := 99 — v_.

Loosely speaking, we think of w as the portion of ¥y with frequency greater than ¢~ 2. In contrast to the full
irrotational part of vy, it is safe to regularize the irrotational part of w. The heuristic reason for this is that
at leading order the term w - nr_ can be interpreted as a high-low paraproduct. That is, the contribution of
the portion where nr, is at comparable or higher frequency compared to w is lower order as there is still a
nontrivial high frequency component of w to compensate for the % derivative discrepancy between the trace

of w and nr_.

For the irrotational part of w, the regularization we choose has to respect the energy monotonicity bound. We
will see below that the spectral multiplier P<c-1(Ne) := 1j_¢-1 -1](Nc) is very convenient for this purpose.
We therefore define the irrotational component of our regularization v, of ¥y by removing the high frequency
part of w - nr_ as follows:

v =0 — VHN P i (w - nr,)

= ’Uir + VHENE_L])Se_l (U} . ’n,Fe).
For simplicity, let us write
W = VHN"Pe—1(w-nr,).
We define the full regularization v, of 99 by
ve 1= 5% + vl

If k is large enough, the combination of Sobolev embedding, ellipticity of N and spectral calculus allows us
to easily establish the pointwise approximation property . Next, we establish the regularization bound
for v.. We begin by writing

Ve = v_ +w +w",

t

where w" is the rotational part of w. We then estimate piece by piece. It is first of all clear that the

corresponding bound holds for v_. So, we turn to estimating w?". For this, we note the following preliminary
bound for V=1 on the space H*(T,) := {f € H*(T.) : J f =0} from Proposition A.5 in [41]:

(8.26) IN Fligoey S fllas—ryy, 0<s <1

From this and the functional calculus for N, we deduce in particular the low regularity bound

(8.27) Hpge—lf\/e_l(w -nr,) |L2(I‘€) S |Jw - nr, H-1(T'.)-

This will be useful for handling the low frequency errors in the estimate for w!". Next we check that (8.26)

and (8.27), in conjunction with Proposition Proposition Proposition and the regularization
bounds for nr, and w, yield

—n
‘Hk7%+n(1—‘ ) SM € )

lwe | esna,y Satm ITell sy nllw - ne 2oy + [Pt (w - nr,)
where the implicit constant can be taken to be much smaller than K (M) since K (M) > M. Note that in

1

the above estimate, we used the paraproduct structure of w - nr,. More specifically, in the case when k — 3

derivatives fall on np_, we compensated the half derivative loss by an €2 gain from w.
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Finally, we move on to showing the regularization bound for w"°t. Here, we use Proposition to obtain

g @y Sar 07 zageny + IV X wlgsen-sany + Pl sy + 1970l pensy

Sarrny €4 w2 + IV Tw™ - np,

w3
where we used (8.3) for &p. Again, the implicit constant can be taken to be much smaller than K (M) if
K'(M) in (8.3) is small enough compared to K(M). To estimate [[w"||12(q.), we simply use (8.26)), the
identity w™" = w — w'" and the Hz (T'.) — H*(Q) bound for #, to crudely estimate
(8.28) w20 S llwll .-
Then, using

varot np, = 7’LUTOt . VTTLFS,

Proposition Proposition and the regularization bounds for T'., we have (if k is large enough)

[w" W esn .y Sar €™+ 0™ | gr-ain i,y + €27 " | ge-2(q,),

which implies by interpolation and (8.28) that

[w" | frsn () Sam € "+ € 2T " gro2(q,)-
From Proposition the inequality and the fact that w is localized to frequency > e’%, we easily
obtain
W™ | an-2(0.) Su Wl er—2(0.) Su e
Therefore, we have
Jw" || gm0y Snan €

with implicit constant much smaller than K (M). This yields the desired regularization bounds for v..

Next, we turn to the energy monotonicity. The domain is fixed in this step, so it is advantageous to compare
the difference between £*(v,, I'.) and &€ k (0g,T¢) directly. It will also be convenient to write the first term in
EF(v,T) as a surface integral:

_ _ _3, _
IVHN*?(a lDta)”%Z’(Q) = [IV*2(a lDta)H%z(r)a

using integration by parts and the functional calculus for A/. Moreover, since the vorticity w, is the same
as wp, we may restrict our attention to the two surface components of the energy in this step of the argument.

We begin with a simple algebraic identity for the a. component of the surface energy:
/ a;INFta |? dS :/ a51|J\/€’“*160|2dS+2/ a'NFta N (a. — o) dS
T. I r.
=3 prk—1 = 2
= llac 2N (ae — ao)l[z2(r,) + Om(e).
To derive an analogous relation for the other portion of the surface energy, we note that from the integer
bounds for N in Section [5| and the identity ||Nk_%f|\L2(p) = [[VHN*72f||12(q), We have the estimate
f—3
N2l

30012 <um 1. On the other hand, we have the elliptic regularity estimate

llao — ae||kag(Fe) St 1o = Pell ooy Sar ([P0 — el gr—1(a.) Sar e
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Together, these imply that

k=3, 1 2 k=3 -1~ \12 k-5, 1 k—3, 4 ~
/ INe ™ 2(a; ' Dya) dS:/ INe™ 2 (ag " Diao)| dS+2/ Ne 2(as "Diac)Ne 2 (a. ' (Dsae — Dyag)) dS
r. r. re

_3
— |V (a7 (Drae — Dydo))|[2ar,y + Ona (o).

Motivated by the identities above, let us define the “energy” corresponding to vy — v. by
- k-3, _ - -1 k1,
gk(UO —ve) = [INe 2 (ag 1(Dtao - Dtae))HQL?(rE) + [lac 2Nek 1(ao - ae)H%%Fe)-
In light of the above identities, it suffices to show that

2 / NE3 (07 Dya )N 2 (a7 (Dyae — Dyiio)) dS +2 / A INF g N (a, — o) dS
Te

T
< C(M)e + E* (i — vo).

Our starting point is to observe the leading order relation given in the following lemma.

Lemma 8.8. We have the following relation between Dia. — Diag and (ve — 0g) - np, :

(8:29) a; ' (Drae — Dydo) = —N((ve — To) - nr,) + O3 r,)(€):

Proof. We begin by noting the bound
(8.30) 100 = vell i1, Sm €
and the elliptic regularity estimate

[P0 — Pell e (o) Sm 1T0 — vell -1,y Swm e
Using the equation for D;p from (7.4) we may therefore write

Diac — Diag = np, - V(ve — 7o) - Vpe — nr, - VATHA(ve — 00) - Vpe) + (’)H,‘.,%(F )(e).

Then, using the standard identity N fir =n-Vf—n- VA7'Af and commuting nr, - V in the first term
and A in the second term above, we can verify, from (8.30)),

D:a. — Diag = —Nc(ac(ve — 9) - nr,) + OH’“*%(FE)(E)'

The conclusion then follows by commuting N; with a. using the Leibniz rule for A, and (8.30). In the
case when everything falls on a., we also compensate with the surface regularization bound (8.10) and the

associated improvement in the bound for 99 — v. when measured in lower regularity Sobolev norms. O
We now turn to the a. component of the energy, which is straightforward. Indeed, by elliptic regularity,

2/ al 'NF L acNE ae — o) dS S llae — doll -1 ¢r.y S [lve — Dol
T

€

HF2(Q0)"

To estimate v, — 0p, we observe the identity v, — 09 = VHN1Ps -1 ((ve — T0) - nr, ), which follows from
the idempotence P .1 = P? Using this, Lemma and ellipticity of N, we have

>e—1

1 ~ 1
i by M €2 (€8 (B0 = v0))? + C(M)e,

~ 1 ~
lve = Boll -3 ., Snr €2 | (ve = Do) - mr,

which suffices by Cauchy-Schwarz.
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Next, we move to the more difficult portion of the energy which involves Dia.. We start by combining
Lemma [8.8 with (ve — T9) - nr, = —Psc—1(w - nr,) to obtain the relation

k=3, 1 k=3, 1 ~ k=3 1 k—3
Ne 2(a; " Diac)Ne 2(a; " (Dsac — Dyag))dS = | Ne 2(a; Diac)Ne 2Pse-1(w-np,)dS + Op(e).
. re

Define p_ and D;a_ in the usual way using the relevant Laplace equations. We split the above integral into

the two components,

(8.31)
/ Nek_%(ae_lDtae)N‘ek_%P>eﬂ(w ‘np,)dS = / Nk_7 a; ' Dia_ )N‘ek_%P>e*1(w -nr,) dS
T

/ NI~ a”'(Dyac — Dta_))Mk7§P>671 (w-mnr,)dS.
We begin by studying the first term in (8.31]). By self-adjointness of N., we have
ANEE (g1 kg k=5, -1 k—3
¢ 2(a;'Dia_)Ne 2Pse-1(w-np,)dS = | Ne *(a; 'Dia_)Ne 2Ps—1(w-np,)dS
T. T

St ella;! Dea | [Pt N (w )

(€),
where we used the multiplier 77>6 1 to recover a power of N, in the high frequency term. Next, we show
that fla " Dua— | ey 1

it suffices to show the same estimate for || Da_||

H*=3(T,)

< € 2. By Sobolev product estimates and the fact that |ja. ) <mez,
w—1, .. To see this, recall that, by definition,
H*"2(T)

Dia_ =nr,-Vu_ -Vp_ —np_-VDip_.

1

Note then that by Proposition |5.11| we have the estimate ||Vv_|\Hk ) Swm €2, since v_ is regular-

,% (Fg
ized at the e 2 scale. Moreover, as np, = Ogr-1(1) and T, is regularized at the e
1

z. By Proposition |5.11| and Proposition |5.19] we also have ||[Vp_]|

I scale, we have

1
<ur € < € 2.
B3 (r,) ~M =3 (r,) ~M

Therefore, by Proposition we have ||np, - Vo - Vp_||

1

< -3

1 € .
"3 (1) ~M

Using Proposition and the fact that the pressure terms in the Laplace equation for Dy;p_ always ap-
pear to one half derivative lower than top order, a similar analysis yields |nr, - VDp_|| 3 Sare e

(T'e)
Therefore, we obtain from Lemma [8:8] the bound,

(€)

/ J\fek_% (a;lDta,)Nek_%Px—l (w-nr,)dS Sy €2 ||73>€_1N (w “nr,)
e

Sar €2 (EM(To = ve))* + Onr(e),
as desired. It remains to deal with the other term in (8.31)). For this, we need to expand Dia. — Dia_. As a

first reduction, we note that we can replace every appearance of p_ with p. in the definition of D;a_ if we

allow for Op;(e2) errors. This is because ||p, —p_|lar@y Sm llve —v_|lmr-1(0.) SMm 2. Hence, we have

Dia_ =nr, - Vu_ -Vp. —nr, - VAS;j (4tr(V?pe - Vo_) + 2tr(Vo_)® + Av_ - Vp,) + OH’“—%(F )(e%).

We may also replace the lower order terms involving v_ by v.. Arguing similarly to Lemma we then

obtain the key identity
1
Dia_ — Diae = acN((ve —v_) - np,) + OH’“*%(FS)(Q)

= GEPSG—I./\[E(U} . TLFE) + Okag(Fé)(E%)’
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Hence, we have

/ NE2 (0= (Dyae — Dia Y)NE 3P (w - nr.) dS <ar — / NEEP_ e JNETEPL o (w - mp,) dS
T. T

1 k—1
+e2[|Ne >Psc-1(w-nr,)|lL2r,)-

The first term on the right-hand side above vanishes by orthogonality (this term is the reason we reweighted
the energy in the first place) and the latter term is controlled by € (£¥(Gy — v.))2. Therefore, we obtain the
desired bound for the D;a. portion of the energy. This completes the proof of Proposition O

8.4. Step 3: Euler plus transport iteration. In this subsection, we construct the iterate (vy,I'1) from
the regularized data (ve,T'¢). Intuitively, what remains to be done is to carry out something akin to the
Euler iteration
vy := v — €(ve - Ve + Vpe + geq)
and then the domain transport
x1(x) := x + eve(x).

Unfortunately, performed individually, these steps lose a full derivative in each iteration. Therefore, it is
important that these two steps be carried out together. This will reduce the derivative loss and allow us
to exploit a discrete version of the energy cancellation seen in the energy estimates. We will then use the
regularization bounds from the previous subsections to control any remaining errors in the iteration. To

carry out this process, we have the following proposition.
Proposition 8.9. Given (v.,T¢) as in the previous step, there exists an iteration (ve,Le) — (v1,T'1) such
that the following properties hold:
(i) (Approzimate solution).
V1 = Ve — €(Ve - Ve + Vpe + geq) + O (€2)  on Q1 NQ,,
V-vy =0 on Q,
Q1 = (I + eve)Qe.
(i) (Energy monotonicity bound).
EF(v1,T1) < (1 + C(M)e)EF (v, T.).
Moreover, v1 and wy satisfy the inductive bounds (8.6]).

We define the change of coordinates z1(z) := = + ev.(z) and the iterated domain 4 by
Q= (I + eve)Qe.

To define v1, we proceed in two steps. First, we define

(8.32) 01(x1) 1= ve — €(Vpe + geq).

We note that 07 is not divergence free, so we define the full iterate v; by correcting the divergence of v; by
a gradient potential:

v1 =101 — VALV - 5y).
At this point, we can verify the inductive bound for v1 and wy. We start with v;. We recall that we
have to show that

o1l e,y < K(M)et
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As a first step, using the regularization bound (8.25) for v, from the previous section, we have from the
definition of ¥y, the regularization bounds (8.10) for I'. and the balanced elliptic estimate Proposition

_ 1 n
(8.33) 1011 mrrn ) < gK(M)E ;

for n = 0,1,2. Next, we aim to control the error between v; and ¥ in H*(€;) and H**1(Q;) (but not

H**2(Q)). We have for n = 0,1 from the balanced elliptic estimate Proposition
o1 = oullgren (o) S Tl e 34 IV - Dall -2y + IV - 01l gr-rin )
1

Sm € 2TV ||z, + IV - 01| -1,

Above, we used the H**! and H**2? (depending on if n is 0 or 1) regularization bounds for v., Moser
estimates, the bounds for I'. and the relation T'y = (I + ev.)(T) to control ||F1||Hk+%+n <y € 27" By
using the definition of ¥; and the regularization bounds for v, it is straightforward to see that the divergence,
V01, contributes an error of size OH;C_HTL(QI)(e%’") and also OHk—Q(Ql)(GZ). Note that for this computation,
one must use the cancellation between the velocity and the pressure in in order to see the desired

gain. Therefore, we have
IVAGH(V - 0) | et ayy = 01 — 01l prrtnayy Sar €2
From this and , we conclude the inductive bound
o1 e,y < K(M)e,
and the leading order expansion for vy (z1) in H*(£,),
vr(@1) = ve = (Ve + gea) + Opreca,)(e).

If £ is large enough, then the leading order expansion with Oc1(€?) error can be seen by slightly
modifying the above argument. Now, we verify the inductive bound ||wy || grsn (o) < €1 7"(K'(M)+eC(M))
for n = 0,1. It suffices to establish this for @; since v; and ¥; agree up to a gradient. Taking curl in the
definition of ¥; and using that w. = @, we have

(8.34) IV x (@1 (1))l a0, < [@ollaren(a,) < K'(M)et 7.
By chain rule, using and the regularization bounds for v., we have
@01 (@) | s 0 < NV X (01(22) [ rren () + C(M)e™™,
which by a change of variables and yields
|1l prrsn () < € FTE (M) + eC(M),

as desired. Note that in the above two lines, we treated C (M) as an arbitrary constant, and relabelled it
from line to line. Importantly, we did not do this for K (M) and K'(M).

Next, we work towards establishing the energy monotonicity bound for the transport part of the argument.
As a first step, we aim to relate the good variables associated to the iterate vy to the good variables associated
to v, at the regularity level of the energy. We have the following lemma.

Lemma 8.10 (Relations between the good variables). The following relations hold:
(i) (Relation for wy).
wl(xl) = W, + OHk—l(QE)(E).
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(i) (Relation for p1).

(8.35) pr(w1) = pe = €Dipe = Oy (€)-
(iii) (Relation for ay).

(8.36) a1(r1) = ac + eDiac + Opgr-1(p,)(€).
(iv) (Relation for Diay ).

Dqai(z1) = Diae — eacNeae + OH’“*%(FG)(E)'

Proof. The relation for w; is immediate. Next, we move to the relations for p; and a;. By the chain rule
and the Laplace equation (7.4) for D;p., we have

A(p1(z1)) = (Ap1)(21) + €Ave - (Vpr)(21) + 26V, - (V2pr)(21) + OH“%(QE)(G)
= Ape + €ADpe + eAve - (Vp1) (1) = Vpe) + O g (o (€)

= Ape + 6ADtpe + OHk—%(Qe)(E)a

where in the last line, we controlled eAwv. - ((Vp1)(z1) — Vpe) = OHk’%(Q )(e) by using the regularization
bounds for v, as well as the error bound (Vpi)(z1) — Vpe = Ope(q,)(€), which is gotten by performing
an H k(Qe) elliptic estimate in the second line, using the fact that p;(z1) — p. vanishes on T'. and that
each of the source terms can be estimated directly in H*~2(Q,) (but not in H*~%(Q,)). Therefore, since
p1(21) — pe — €Dy p, vanishes on ', we may now do a H**2(9,) elliptic estimate to obtain the finer bound,
(8.37) p1(z1) — pe — €Dipe = OH’“+%(Q€)(€)’
which gives (8.35]). We also deduce from this that
(Vp1)(z1) = Vpe + €VDipe — €V, - (Vpr)(z1) + OH’“%(Q )(e)
= vpe + eDtvpe + OHk—%(Qe)(e)‘
From this we see that
al(xl) = a¢ + eDtae — (nr‘l (xl) — npe) . (Vpl)(xl) + OHk—l(Fe)(E)
= ae + eDiae + OHk—l(FE)(E),

where in the last line we used
1
(nry (z1) —nr,) - (Vp1)(z1) = —ai(21)(nr, (21) —nr,) -nr, (21) = —al(ml)i\nrl(«’«"l) —nr > = Ogr-a(r, (€).

This gives the relation (8.36)).

Next, we prove the relation for D;a,. First, we see that
—(D¢Vp1)(21) + Dy Vpe = ((Vur - Vpi)(21) = Voe - Vpe) = (VDyp1)(21) — VDipe)
= ((Vv1)(z1) = V) - Vpe = (VDip1) (1) — VDipe) + Opgr-1(q,)(€)-
To control the second term on the right-hand side above, we write out the Laplace equation for Dyp;(x1):
A(Dyip1(21)) = (AD¢p1)(z1) + Opgr—2(q,) (€).

By a similar analysis to the proof of (8.36)) and the relation

(8.38)

(Avy)(z1) = A(vi(z1)) + Opr—2q,)(€) = Ave — eVAp + Opr—2(q,(€) = Ave + Ogr-2(q,)(€),
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we obtain

(ADyp1)(z1) = ADipe + (Avy - Vp1)(x1) — Ave - Vpe + 4tr(Voy - V1) (21) — 4trVo, - Vip, + Onr—2(q,)(€)
= AD;p. + 4tr (Vv6 ~((V?p1)(21) — V2pe)) + Opr-2(q,)(€)
= ADpe + Opr—2(q,)(€),

where in the last line, we used (8.37) and that eDyp. = Opr(q.)(¢). Combining the above with (8.38), one
obtains by elliptic regularity,

—D:Vpi(21) + DiVpe = ((Vv1)(@1) — Voe) - Vpe + Opr-1(q,) (€).
Then, noting from that
(DeVp1)(@1) - (nry (1) = nr) = (D Vp1)(@1) - (a7 'Vpe = (a7 ' Vp1)(21) = O g ) (€)
and using the fact that Ap. is lower order, we obtain
Diay(z1) — Diac = —acny, - V(vi(x1) —ve) -nr, — (DiVp1)(z1) - (np, (1) — np,) + (’)Hk,%(ré)(e)
= eacnp, - VVpe -np, + O k,%(re)(e)
= eacNVpe-nr, + 0, e, )( €).

Finally, noting that Ncnr, - nr, is lower order, we have, thanks to the Leibniz rule for N,

€acNVpe - np, = —eacNe(nr ac) - nr, = —eacNeac + 0y (o ().

Therefore, we have the desired relation for Dya;. This completes the proof of the lemma. O

Energy monotonicity. To finish the proof of Proposition it remains to establish energy monotonicity.
The following lemma will allow us to more easily work with the relations in Lemma

Lemma 8.11. Define the “pulled—back” energy EF(vy,T'1) by
E5(vy,Ty) = 1+ [NE72 (ag ! (1) Diar (21)) 2,y + llay 2 ? () NE Har (@) I72(r,

+ llwr (@)1 Fe-1 ) + 1 (@) 1220,
Then we have the relation

gk(’Ul,Fl) S Sf(vl, Fl) + OM(E)

Before proving the above lemma, we show how it easily implies the desired energy monotonicity bound. In
light of Lemma it suffices to establish the bound

EF(v1,T1) < (14 C(M)e)EF (v, T0).

The monotonicity bound for the vorticity is immediate from Lemma For the surface components of the

energy, we first use Lemma [8.10] the fact that H./\f : I .

< .. .
3 () L2(r.) M 1 and the regularization bounds

for I'. and v, to obtain

/IN (a7 (1) Diax (21))? dS — /w (a- Dya)[2 dS
(8.39) _2/ N _1Dtae)Nek_%(ae_l((Dtal)(xl)—Dtae))d5+0M(€)

= —26/ aZ*NF*1Da NFta. dS + Op(e),
r

€
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where in the last line, we used the commutator estimate ||[[N*~*, a7!]Diacll2r.) Sas 1 to shift a factor of

1 _3
NZ onto Nf 2 Dsa.. We similarly observe the leading order relation for the other component of the energy

by using (8.36) to obtain,
/ al_l(Jvl)\./\/f*l(al(xl)ﬂ2 dsS f/ a;1|./\/€k71a6|2d$ = 26/ a;lNEkletaE./\/;kflaE dS + Oy (e).
Te

Te I'e

The first term on the right-hand side of the above relation cancels the main term on the right-hand side of
(8.39). Combining everything together then gives

EF(v1,T1) < (14 C(M)e)EF (v, T),
as desired. It remains now to establish Lemma

Proof of Lemma[8.11 By asimple change of variables, it is clear that the difference between ||w; (1) ||2Hk*1(ﬂ )
and ||w; H%{k—l(ﬂl) contributes only Oy (e) errors. This is likewise true for the L? component of the velocity.
The main difficulty is in dealing with the surface components of the energy. For this, we need the following

proposition.

Proposition 8.12. Let —3 < s <k —2 and let f € H*T1(['1). Then we have the following bound on T.:

INLF) (1) = Ne(f (@)l s 0oy Sar €l fllasry)-

Proof. First, we handle the case s = f%. If g € C*(T,), we write h = g(xl_l)’HlJ where J is the Jacobian

corresponding to the change of variables y = z1(x). Then we have by the divergence theorem,

AEQ((le)(Il)_Ne(f(l'l)))ds_/ hj\/'lfds_/

Iy r

1
2

gNe(f(21)) dS

= Vth-VHlfdx—/ VHeg - VH(f(x1)) da.
Qe

Q4
Using again the change of variables x +— x; for the first term in the second line above, together with the

estimates

IH1hll o) Sarllgll and |[(VH1f) (@)l 2200 Sa £l

H3 () H3 ()
it is easy to verify
(8.40)

/F d((NLf) (1) — No( (1)) dS S /Q V((Hah) (1) — Heg) - (VHy f) (1) d

+ | VHg D00 = ) det gl o 1,y

We label the first and second terms on the right-hand side above by I; and I5. For I;, we use the fact that

on I'. we have
(Hih)(z1) — Heg = (J(21) — I)g
to obtain the following simple elliptic estimate

where we used the chain rule and that #; h is harmonic to estimate A((Hih)(z1)). A similar elliptic estimate

yields the same bound for I5. This establishes the case s = —%. By interpolation, we only need to handle
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the remaining cases when % < s < k—2. As a starting point, we have from some simple manipulations with

the chain rule and the trace inequality,

[N ) @) = Ne(f @Oy S ell fll 2oy + ey (21) = ne) - (VHLUF) (@)l 5e )
HNH) (1) = He(F @) yoseg .-

By writing nr, (z1) — nr, = aZ'Vp. — a; ' (21)(Vp1)(21) and using the relations in Lemma and that

s < k — 2, the second term on the right is straightforward to control by €| f||zs+1(r,). For the third term,

we do an elliptic estimate analogous to the s = —1 case (using that (H1f)(z1) — He(f(21)) = 0 on I') to

obtain

IH1f) () = He(f@)ll yors ) S [AHL.) @ oy ) S ell ey
This completes the proof. O
Now we return to the proof of Lemma We note first that

[NF " an) (1) = NEHan (@) |2y S INe WV 2 an) (1) — NFHag (1))l 2(r)
+ INeWVF2ar) (1) — (N an) () | 2o, -

Applying Proposition to the term in the second line and using the H' — L? bound for N, we have
[NFan) (1) = NEHar (@) 2.y Sar [V 2a) (1) = NE2(aa (@) [,y + O (e).-
Iterating this procedure and applying Proposition k — 2 times, we see that we have
INE ™~ an) (@) = NEHan (@)l z2cr.) Surce
It follows from the above and a change of variables that we have
lar BAF @ laqr,) < llar  @ONET (@ (@), + On (o)
To conclude the proof of Lemma we need to show that
IVHLNT (a7 ' Dean)) 72,y < IVHNE 2 ar ! (21) Dear (21)) 720,y + Onr(e).
From a change of variables, we see that
IVHLNT (a7 Dear)) 720,y = IVHNE2 (a7 (1) Dear(21)) 1220,y Sar T + Ona(e),

where
T = [(VHINT (a7 ' Diar))(@1) — VHNE (a7 (1) Diar (21)) | 2, -

By elliptic regularity, it is easy to verify the bound

T Su (W72 (a7 ' Dear)) (21) = NE2 (a1 (21) Dear (21)) | +Oum(e).

HZz(T,)

From here, we use Proposition [8.12] similarly to the other surface term in the energy to estimate
INF 2 (a1 ' Dyar)) (1) = NE2(ag (1) Dyan (21))] 4 ) Sw e

This completes the proof. O
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8.5. Convergence of the iteration scheme. We have now arrived at the final step of the existence proof,
where we use our one step iteration result in Theorem [8.1]in order to prove the existence of regular solutions.

Precisely, we aim to establish the following theorem.

Theorem 8.13. Let k be a sufficiently large even integer and M > 0. Let (vo,To) € H* be an initial
data set so that ||(vo,To)|lgr < M. Then there exists T = T(M) and a solution (v,T') to the free boundary

incompressible Euler equations on [0,T) with this initial data and the following reqularity properties:
(v,T) € L= ([0, T]; HF) 1 C([0, T); H 1)

with the uniform bound
[, D)) llax Sme L, ¢ €[0,T].

We remark that the solution we construct is unique by the result in Theorem One missing piece here is
the lack of continuity in H*, which does not follow from the proof below. However, this will be rectified in
the next section. We now turn to the proof of the theorem.

Proof. Starting from the initial data (vo,To) € H* with Ty € A, := A(L, €,), for each small time scale
€ we construct a discrete approximate solution (ve, ') which is defined at discrete times ¢ = 0, ¢, 2, ..., as

follows:

(i) We define (v¢(0),T'.(0)) by directly regularizing (vo, o) at scale e. Such a regularization is provided
by Proposition with € = 277, In view of the higher regularity bound there, these regularized
data will satisfy the hypothesis of our one step Theorem m with M replaced by M = C(A)M.

(ii) We inductively define the approximate solutions (v¢(je), I'c(je)) by repeatedly applying the iteration
step in Theorem (8.1

To control the growth of the H* norms of (v, I'.) we rely on the energy monotonicity relation, together with
the coercivity property in Theorem [7.1] (and also the relation (8.2)). We use the energy coercivity in both

ways. At time ¢ = 0 we have

£ (v,(0), T(0)) < C1(A)M.
We let our iteration continue for as long as
E*(ve(je), Te(je)) < 2C1(A)M,
(8.41) L (je) € 2A, := A(T,, €0, 20).

As long as this happens, using the coercivity in the other direction we get
[[(ve(j€), Te(G€)) lmr < Ca(A)M.
Now by the energy monotonicity bound we conclude that
EF(ve(je), Te(je)) < (1 + C(Ca(A)M)e)? € (ve(0),T(0)) < eV =DMIER(1(0),T(0)).
Hence we can reach the cutoff given by the first inequality in no earlier than at time
t=ej < T(M) := C(Ca(A)M) ",

which is a bound that does not depend on e. Similarly, for the second requirement in (8.41)), the relations
(8.5) ensure that at each step the boundary only moves by O(e), so by step j it moves at most by O(je).
This leads to a similar constraint as above on the number of steps. Analogous reasoning shows that the

vorticity growth in is also harmless on this time scale.
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To summarize, we have proved that the discrete approximate solutions (v, I'c) are all defined up to the
above time T'(M), and satisfy the uniform bound

[(ve, Te)llegs S 1 in [0, 77,
with I'. € 2A,. Since k is large enough, by Sobolev embeddings, this yields uniform bounds, say, in C3,
(8.42) [velles + Inelles Sar 1 in [0, 77,

where 7, := np, is the defining function for I'. € 2A,.

The other piece of information we have about ve comes from ({8.5). However, this only tells us what happens
over a single time step of size €, so we need to iterate it over multiple steps. We begin with the first relation
for the velocity in (8.5)), which implies that

[ve(t, &) — ve(s,y)| + |Vue(t,x) — Voe(s,y)| Sm [t — sl + | — g, t—s=e
Iterating this we arrive at
(8.43) |ve(t, &) — ve(s,y)| + |Vue(t,x) — Voe(s,y)| S |t — s|+ |z —yl, t,s €eNN[0,T].
A similar reasoning based on the last part of yields
(8.44) 17e() = me(s)ller Sar [t — s, t,s €eNNO,T].
Similarly, from in Lemma [8.10] and the elliptic estimate || Dype|| g+ Sas 1 for each time, we also get a

difference bound for the pressure; namely,
(8.45) [Vpe(t, z) — Vpe(s,y)| Sm |t —s| + |z —yl, t,s € eNN[0,T].

Equipped with the last three Lipschitz bounds in time, we are now able to return to (8.5) and reiterate
in order to obtain second order information. As above, we begin with the first relation in (8.5). Here we
reiterate directly, using the bounds (8.43) and (8.45)) in order to compare the expressions on the right at
different times in the uniform norm. This yields

(8.46) Ve(t) = ve(s) — (t — 8)(ve(s) - Vve(s) + Vpe(s) + gea) + O((t — 5)?), t,s € eNN|0,T].

The same procedure applied to the last component of (8.5 yields

(8.47) Qc(t) = (I + (t — 8)ve(8)Qk(s) + O((t — 5)?), t,s € eNN[0,T].

We now have enough information about our approximate solutions (v, I'¢), and we seek to obtain the desired
solution (v,T") by taking the limit of (v.,I'¢) on a subsequence as ¢ — 0. For this it is convenient to take
€ of the form ¢ = 27, where we let m — oo. Then the time domains of the corresponding approximate

solutions v,,, are nested.

Starting from the Lipschitz bounds (8.43)), (8.44)) and (8.45)), a careful application of the Arzela-Ascoli
theorem yields uniformly convergent subsequences

(8.48) Nm — 1, V= U, YV, = Vo, Vpm — Vp,

whose limits still satisfies the bounds (8.43)), (8.44) and (8.45)). It remains to show that (v,I") is the desired
solution to the free boundary incompressible Euler equations, with I defined by n and p, where p is the
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associated pressure.

We begin by upgrading the spatial regularity of v and 7. For this we observe that for t € 27N N [0, T] we
can pass to the limit as m — oo in (8.42)) to obtain the uniform bound

[olles + lInlles <ar 1.

Since both v and 7 are Lipschitz continuous in ¢, this extends easily to all ¢ € [0,7]. A similar argument

applies to the H* norm of (v,T).

Next we show that (v,T') solves the free boundary incompressible Euler equations, which we do in several

steps:

i) The initial data. The fact that at the initial time we have (v(0),T'(0)) = (vo, ') follows directly from the
construction of (v¢(0),I'¢(0)); namely, by Proposition

ii) The pressure equation. To verify that p is the pressure associated to v and T' we simply use the uniform

convergence of Vu,,, 1, and Vp,, in order to pass to the limit in the pressure equation (|1.5)).

i11) The incompressible Euler equations. Here we directly use the uniform convergence (8.48) in order to
pass to the limit in (8.46)). This implies that v is differentiable in time, and that the incompressible Euler

equations are verified.

iv) The kinematic boundary condition. Arguing as above, this time we directly use the uniform convergence

(8.48]) in order to pass to the limit in (8.47]).

Finally, the C(H*~1) regularity of (v,T") follows directly from the incompressible Euler equations and the
kinematic boundary condition. O

9. ROUGH SOLUTIONS

In this section, we aim to construct solutions in the state space H® as limits of regular solutions for s > %—i— 1.

The general procedure for executing this construction will be as follows.

(i) We regularize the initial data.
(ii) We prove uniform bounds for the corresponding regularized solutions.

(iii) We show convergence of the regularized solutions in a weaker topology.

(iv) We combine the difference estimates and the uniform H?® bounds from step ({ii) to obtain convergence

in the H® topology.

As will be seen below, this procedure carries with it various subtleties since it involves comparing functions
defined on different domains. In addition, we must carefully address the fact that our control parameters in

the difference and energy estimates are not entirely consistent.

9.1. Initial data regularization. Let (vg,Tg) € H® be an initial data. The first step is to place Iy within
a suitable collar A, = A(T',,€,6) with § < 1. Since I'g € H® C Cb¢t T, is easily obtained by regularizing
I'p on a small enough spatial scale. We remark that the price to pay for a small enough regularization scale
is that the higher Sobolev norms H* of ', will be large; but this is acceptable, as explained in Remark
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Let M := ||(vo,T0)|lm: denote the data size measured relative to the collar A, and write ¢y for the lower
bound on the Taylor term. We begin by constructing regularized data at each dyadic scale 27. For this,
we define I'g ; (along with Qg ;) by regularizing the collar parameterization 7. More specifically, we define
Mo,; = P<;jno, where the meaning of P<; is as in Section @ Then, we define the regularized velocity
vo; = W<,vo. Here, we recall that, as long as j is much larger than M, v ; is defined on some 277
enlargement of both g ; and €. Indeed, by Sobolev embeddings, we have the distance bound

_3,
05 — ol Sar 2727
Moreover, for such j, we stay in the collar and have a uniform lower bound on the Taylor term.

9.2. Uniform bounds and lifespan of regular solutions. By Theorem the regularized data
(vo,5,T0,5) from the previous step generate corresponding smooth solutions (v;,I';). Our goal now is to
establish uniform bounds for these regular solutions and, in particular, show that they have a lifespan which
depends only on the size of the initial data (vg,Tg) in H*, Taylor sign and the collar. To do this, we carry

out a bootstrap argument with the H® norm of (v;,T';).

In the argument below, we will be working with the enlarged control parameter Bj(t) := lvjllwr.(q,) +
||Fj||cl‘% + | Dtpjllw1.(q,) for the corresponding solution (v;,I';). Note that the reason we work for now
with B; instead of just B;(t) := [vjllwi.(q,) + HFJ-HCL% is because we will make use of the difference
estimates which require control of D;p;. By elliptic regularity and Sobolev embeddings, it is easy to see that

B is controlled by some polynomial in ||(vj, T';)||ge-

Fix some large parameters Ag and By depending only on the numerical constants for the data (M, ¢y and
so forth) such that Ay <« By. As alluded to above, we make the bootstrap assumption

€o
b
with j(M) sufficiently large depending on M, in a time interval [0,T] where all the (v;,I';) are defined as

(v, ) @)= <2Bo,  A;(t) <240, a;(t) > Lj(t) €2, tel0,T], j(M)=:jo<j<j,

smooth solutions with boundaries in the collar. Above, j; is some finite but arbitrarily large parameter,
introduced for technical convenience to ensure that we run the bootstrap on only finitely many solutions at
a time. Our aim will be to show that we can improve this bootstrap assumption as long as T' < T} for some
time Ty > 0 which is independent of j;.

For any large integer k > s > % + 1 as in Theorem we may consider the solutions (v;,I';) as solutions
in H*. In light of Theorems and for each j > jo, the solution (v;,T';) can be continued past time
T in H* (and therefore H®) as long as the bootstrap is satisfied. Morally speaking, our choice for Ty will be
1
Ty < m,
for some fixed polynomial P, though this is not entirely accurate, as Ty will also depend on the collar and
cp. Thanks to the energy bound in Theorem if the bootstrap could be extended to such a Ty, it would
guarantee uniform H* bounds for (v;,T';) for any integer k > g + 1 in terms of its initial data in H*. The
main difficulty we face is that, a priori, the H® bounds for (v;,I';) do not necessarily propagate for noninteger
s. The goal, therefore, is to establish H® bounds for noninteger s. We will do this by working solely with

the energy estimates for integer indices and the difference estimates.
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We begin by letting ¢; be the H® admissible frequency envelope for the initial data (v, o) given by (6.3)).
We let o > 1 be such that k£ = s + « is an integer. From Proposition we know that the regularized data
(vo,5,T0,5) satisfy the bounds

(9-1) 1(v0,3, Lo,) las+e Sao 27 ¢ (vo, To) gz

From the energy bounds in Theorem and the bootstrap hypothesis, we deduce from (9.1) and the
definition of c; that

(9.2) (v, D) () llzee Sap 2°7¢;(1+ (o, To) =), t € [0, 7],

as long as T < Tp < ﬁ. One may think of this as a high frequency bound, which roughly speaking
allows us to control frequencies > 27 in (v;,I';). Note that in (9.2)) we suppressed the implicit dependence
on the Taylor term and the collar. We will do this throughout the subsection except when these terms are

of primary importance, as it will be clear that our argument can handle these minor technicalities.

To estimate low frequencies we use the difference estimates. Precisely, at the initial time we claim that we
have the difference bound

(9.3) D((v0,5,To,5), (v041,To41)) Sao 2727°¢F || (vo, To) [z -

This bound is clear by Proposition for the first term in . To see this for the surface integral, we use
that on foyj = 0(Q,; N Qo j11), the pressure difference py ; — po j4+1 is proportional (with implicit constant
depending on Ap) to the distance between I'g ; and I'g 41, measured using the displacement function .
Combining this with a change of variables, we have

[ Po.j — Poj+1]? dS = aq 110,541 = 0,311 72(r.) Sa0 27 2% [ (vo, To)[1Fre
0

%)

from which (9.3) follows. By Theorem we can propagate the difference bound (9.3]) to obtain
(9.4) D((v3,T)(t), (vj11,Tj41)(#) Sao 27%°¢H || (w0, To)[lfr, € [0,T],
aslong as T < Th < ﬁ. In particular, this gives by a similar argument to the above,
(9.5) lvit1 — vill2,n0,00) e = mille2.y Sao 277°¢5] (v, To) [ as-

Now, the goal is to combine the high frequency bound (9.2)) and the L? difference bound (9.5) in order to
obtain a uniform H® bound of the form

15, Tj) e Sap 1+ |[(vo, To)[m,

for T' < Ty. To establish such a bound for I';, we consider the telescoping series on I'. given by

(9.6) m=n+ Y. (e —m).
Jo<I<j—1

From the higher energy bound (9.2)), we have for each jo <1 <j—1,

(9.7) 1 = mllzroe e,y a0 2°e(1+ [|(vo, To)[lare).

Using the telescoping sum and interpolation, it is straightforward to verify from (9.5), and an argument
similar to Proposition (see also [28]) that for each k > 0,

(9.8) | Penill s .y Sao cx(1+ [[(vo, To)lws)-
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As a consequence, by almost orthogonality, we obtain the uniform bound
(9.9) 1Tl Sao 1+ 1(vo, To)llee-

Next, we turn to the bound for v;. We first note that the analogous decomposition to for v; does not
work because for each I < j — 1, v; and v;41 are defined on different domains. However, we can compare v;
and v;41 by first regularizing each function v; — W<;v; which is defined on a 2-! enlargement of €;. For this

comparison to work, we need to know that I'; and I';1; are sufficiently close. By interpolating using (9.5))

and we have
_3 Y
(9.10) is1 = mjllzen) Sa0 272 g = mill g ) Sa0 2775

for some § > 0. Now, we return to the uniform bound for v;. Thanks to (9.10), we can safely consider the

decomposition on £,

(9.11) vi=Veov,+ Y, Papvgn — Y+ (I — Vg,
Jo<I<i—1

The first term in the telescoping decomposition is trivial to bound. We therefore focus our attention on the

remaining terms. First, define for [ > jg
J
O =) %
k=l
Thanks again to (9.10)), for jo large enough (independent of j and only depending on the data parameters),
we can arrange for the regularization operator W<, to be bounded from H*(€Y;) to H*(€2)) where Q] is some

27! enlargement of the union of all of the Qj, for & > I. We will use this fact to establish the following lemma
which will help us to estimate the intermediate terms in (9.11)).

Lemma 9.1. Let jo <1 < j — 1, where jg is some universal parameter depending only on the numerical

constants for the data. Then given the above decomposition for v;, we have

(9.12) 1V <i1vi1 — Y|l 2o,y Sa, 27 a1+ [[(vo, To) lm:),

(9.13) 1@ <i1vii1 — Vv gevo(a,) Sao 2'%a(l + [(vo, To)llms)-
By Sobolev embedding, a corollary of this lemma is the following pointwise bound at the C' regularity.
Corollary 9.2. We have the estimate

10 <i1vi1 — Uvillere,) Sao 2701+ [[(v0,To)lme), 6> 0.

Proof. The latter bound (9.13) is clear from the H*T® boundedness of W<; and (9.2). For the first bound,
we split
Vv — Vv = (W<p1 — Yp)vgpr + V< (v — ).
Using Proposition and (9.2)), we have
(¥ <t1 = <)ol z2o,) Sao 27" er(1+ || (vo, To)[[ex:)-

For the remaining term, we use the difference bound and the L? boundedness of ¥<; to obtain

i —ls
1V <i(vier — 0l p20,) Sao D((v,T0), (041, Ti41))? Sap 27| (vo, To) llee-
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We also observe that the same bounds in Lemma [9.1] hold for the third term in (9.11)) but with the param-
eter [ replaced by j in the corresponding estimates. This is immediate for (9.13) and follows by telescopic

summation from Proposition in the case of ([9.12)).

We can use the above lemma (and the corresponding bounds for (I — ¥<;)v,) to estimate similarly to (9.8))
that for each k > 0,

1 Prvj || s (may Sao ck(1+[[(vo, Do) lms),
where we carefully note here that for each k& > 0, Py should be interpreted as PyFEq, where Eq; is the

extension operator on §); from Proposition From this observation and almost orthogonality, we obtain
the desired uniform bound,
(03, T3) ()l Sap 1+ [1(vo, To)le

for t € [0,7p]). In particular, if the constant By is chosen to be sufficiently large relative to Ag and the
data size, this improves the bootstrap assumption for |(v;,T;)|lms. It remains to improve the bootstrap
assumption for A; and at the same time the Taylor term and the collar neighborhood size. For this we
rely on a computation similar to [I7, [4I] for the Lagrangian flow map w;(¢,-) : Q¢ ; — Q;(t), defined as the
solution to the ODE

Owuji(t,y) =vj(t,ui(t,y), yeQoy, u;(0)=1.
Since s > % + 1, if Tj is small enough, then for any 0 <t < T < Tj, we have the bound

t
it ) = Il s o,) S /0 [0 (¢, M s 0 e 1w (s ) 7202, A

Sao t(vo, To)l[:-

If A is large enough relative to the data size, this easily implies simultaneously
3
Di(t) € She IT5@)lene < Ao,
as long as Tj is small enough. Doing a similar computation with u; in place of u and using the equation
AFu;j(t,y) = Bu(v;(t,u;(t,y))) = —(Vp; + gea) (t,u;(t,y))

together with the elliptic estimates for the pressure, we obtain also

032 g, < Ao

This improves the bootstrap assumption for A;. Finally, a similar argument but instead with the pressure
gradient and the H*¢ bound for D;p allows one to close the bootstrap for a; as long as Ty is sufficiently small

depending on M and cg.

9.3. The limiting solution. Here we show that for T' < Ty,

(v,T) = lim (v;,T';) in C([0,T]; H®).

J—00

First, we show domain convergence in H*, which is more straightforward. Indeed, from (9.10) we see that
the limiting domain €2 exists and has Lipschitz boundary I'". Next, we let 7 > jo and consider the telescoping
sum

oo
n—"mn = anﬂ — M-
I=j
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An analysis similar to the previous subsection, using the difference bounds and the higher energy bounds,
yields

_ 34
(9.14) I = njllzoe(r.) Sao 2727
and
I = njlleqorymsr.)) Sao llejlliz(1+ [(vo, To)llre),

which in particular shows convergence of I'; — T" in C([0,7]; H*(I',)). Next, we turn to showing the
convergence v; — v in C([0,T]; H®). We, formally, define v through the telescoping sum

v = W), + Z Vv — Yo,

1>3o

where, as usual, jo ensures that all the terms in the sum are defined on Q. Thanks to (9.14)), this is possible.
We begin by showing that ¥<;v; — v in H®(};) uniformly in ¢ (which is again unambiguous thanks to
(19.14])). We have

v — \Ilgjvj = Z \Ij§l+1vl+1 - \I/Sﬂ}l.
1>j

From this we see that
v = Y<villms @) Sao llesjlliz (14 [[(vo, To)llms),

which establishes the desired uniform convergence in H®(£;). To show convergence of v; in the sense of

Definition we consider the regularization v = ¥<,,v,,. We then have as above,

[0 = W<mvmllm=2) Sao llezmlliz (1 + [[(vo, To)lle),
which goes to 0 as m — oco. On the other hand, for j > m, we have

v = C<mvmll s (9;) Saoll(1 = Y<)villms ) + 1W<i(vi — V)llas;) + 1¥<m(m — )z (o))
+ 1 ¥<jv = V<ol ms (o).

Using (9.2 for the first term and the difference bounds for D((v;,T;), (v,T)), D((vm,'m), (v,T)) for the

second and third terms, respectively, we obtain
[vj = W<mvmllas(a,) Sao llesmlliz (14 [(vo, To)lms) + W <jv — V<ol s ;)
To estimate the last term above, we have

[V<jv = Yamvlms (o) Sao [(Y<i — V<m) (v = Y<mvm)|lms(0,) + (Y <i — Y<m) Y<mOmll s ()
Sao 0 = Yamvmll =) + 27" [vm ge+e (@,
Sao llezmlliz (1 +[(vo, To) a2 ),
where we used (9.2) to estimate the second term in the last inequality. The combination of the above

estimates establishes strong convergence in H®. A similar argument shows continuity of v with values in H?.

Finally, one may also check that the limiting solution solves the free boundary Euler equations.
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9.4. Continuous dependence. Given a sequence of initial data (vfy,I'§) € H® such that (v, Tf) —
(vo,T0), we aim to show that we have the corresponding convergence of the solutions (v, I'") — (v,T") in
C([0,T); H?). First, we note that thanks to the data convergence, the corresponding solutions have a uniform
in n lifespan in H®, and so, on some compact time interval [0, 7], we have |[(v",T")|la= + || (v, T)|la= Sam 1.
Let us denote by ¢} and ¢; the admissible frequency envelopes for the data (v, Tg) and (vo,T'g), respectively.
Now, let € > 0 and let § = d(€) > 0 be a small positive constant to be chosen. Moreover, let ng = ng(e) be

some large integer to be chosen.

By definition of convergence in H*, there is a divergence free function v§ € H*(€J) defined on some enlarged
domain Q9 such that

llvg — 'UgHHs(QO) + limsup ||vj — 'Ug”Hs(szg) < 0.
n— o0

Moreover, for n large enough, depending only on §, v§ is defined on a neighborhood of ¢ and Q. Moreover,
we may also assume that vJ belongs to H*(R?). Indeed, for some §' < §, v is defined on the domain €2
defined by taking 74 = 79 + ¢’. Then we can extend vg to R? using Proposition We note that vg is
not necessarily divergence free on R? but is on an enlargement of Qg and Qf for n large enough. Now, let
c?- denote the admissible frequency envelope for (v3,T) (note that we are using the same domain Qy as vg
for the frequency envelope here; if § is small enough, Taylor sign holds for this state) and denote by (v?,T'?)
the corresponding H? solution (which we note has lifespan comparable to v and v™ for n large enough). We

begin by choosing j = j(e) large enough so that

(9.15) lessle < e

We next observe that we can choose d(e) and then ng(d) so that
(9.16) 2 llie Sar €+ [lesjlliz Sare,

for n > ng. One can establish this by estimating the error when comparing terms in c?- and ¢} and then the
error when comparing terms in c?- and c¢; by using 1) and square summing. The main error in the first
comparison is essentially comprised of two terms. The first term to control involves the error between 7

and ng. If § is small enough and n is large enough, we have

Imo — nollgsr,) <96 <e.

The second source of error comes from the extensions of the velocity functions,
1Bz g — Eaovhll ey < 1By vg — Bagvgll e @a) + || Bag (v§ — 00) || o (ma)-

If § < €, then the latter term is O(e) by (uniform in n) boundedness of Egp and the definition of vy
The first term is O(e) if n is large enough (relative to ¢) thanks to the continuity property of the family
Eqr in Proposition Then one establishes by comparing c¢; and c?- which just involves controlling
essentially the error term || Eq, (v — vo)| s (ra)-

Now that we have uniform smallness of the initial data frequency envelopes, the next step is to compare the
corresponding solutions. First, thanks to the difference estimates, we observe that for large enough n, I'"
and T are within distance < 277 as long as d is chosen small enough relative to j (recall that j was chosen
to ensure ) Indeed, by interpolating and using the uniform H*® bound, we have

3 3
1" =1l e ey Sar D((0",T7), (0, 1°)) 3 Sy 625
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This ensures that we may compare W< jU§ to v™. Denoting by (’U?, I‘;‘) the regular solution corresponding to
the regularized data (v ;, Iy ;) (from the previous section), we have

1@ <j0° = 0" gegamy S 1W< (00 = 0™ ga@m) + 1W< (0" = 0] L= m) + 0" = O <0} | 1)

Sar el + 275 D(", T"), (v, T7))? +27°D((v", T"), (v, T7))2

S lle2; iz + 27°D((",T™), (v°,19)) 2,
which if § is small enough gives

1020 = 0"l s amy Sur €
Similarly, we may obtain
"™ = nllesr.) Swm e
and
1W<;0° = vll a0y S e

This establishes continuous dependence.

9.5. Lifespan of rough solutions. Here, we finally establish the continuation criterion from Theorem [I.7]
for H*® solutions. We consider initial data (vo,T'g) € H® and the corresponding solution (v,T") in a time
interval [0,T) which has the property that

T
C:= sup A(t) +/ B(t)dt < oo, a(t)>co>0, tel0,T),
0

0<t<T
and whose domains €2; maintain a uniform thickness. Unlike with the construction of rough solutions, we

now work with the weaker control parameter

B(t) = llvllwre @ + 1Tl 1,3 -

One starting difficulty we face in this proof is that we do not a priori have a fixed reference collar neighbor-
hood. However, the uniform bound on A(¢) guarantees that the free boundaries I'; are uniformly of class
C1¢, and the uniform bound on v guarantees that they move at most with velocity O(1). This implies that
the limiting boundary I't = lim,_, I'; exists in the uniform topology, and also belongs to C'¢, with the

corresponding domain (27 having positive thickness. Furthermore, by interpolation, it follows that
limIy =T7  in CH, 0<e <e.
t—=T

This allows us define the reference boundary I', as a regularization of I'r, so that I'r € A(T.,€/2,5/4) for
an acceptable choice of § ensuring that A(T'.,€/2,6/2) is also a well-defined collar (cf. Remark [3.4). Then
the above convergence implies that I'; € A, := A(T',,€/2,5/2) for ¢ close to T

Reinitializing the starting time close to T, we arrive at the case where we have the initial data (vg, ) € H®

and the corresponding solution (v,T') in a time interval [0,T) with the property that
I'yeA,, te][0,1).

From the local well-posedness theorem, it suffices to show that

(9.17) 10, D)l o< (f0.1):m0) < 0.

Similarly to the previous subsections, the strategy we would like to employ will involve showing that the
control parameters for a suitable family of regularized solutions (v;,I';) can be controlled to leading order

by the control parameters for (v,I'). The main difficulty is that v; and v are defined on different domains.
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As in the previous sections, as long as we can ensure that I'; and I' are within distance 277 (1+0) of each
other, we can compare v with W<;v;. However, there is one added difficulty now. The difference bound,
which ensured the closeness of domains in the previous sections, has a stronger control parameter involving
the term || Dyp||w1.(q,) in addition to B(t), which from Lemma has size controlled by B(t) and an

additional logarithmic factor.

To overcome this, we will divide [0,T) into two disjoint intervals [0, 7] and [T',T) where 0 < T < T and T
has the property that

T
/ B(t) dt < 6o,

T
where g is some parameter to be chosen depending only on C, ¢, the collar and the H® norm of (vg,Ty).

Given such a T', we consider the regularized data (v ;.7 ;) of (v(T),T'7) and the corresponding solutions
(v;,T;). We remark that T and &y need to be chosen carefully to not depend on j, but we postpone this
choice for now. Their purpose is to guarantee that the stronger control parameter D;p in the difference
bounds as well as the logarithmic factor in the energy bounds does not cause the distance between I'; and
T to grow larger than 2770+9) for times ¢ < T' where (v;,T;) is defined.

From the continuous dependence result, the above regularized solutions converge to (v,T") in [T, T) and their
lifespans T satisfy
liminf 7 > T — T.

J—00

However, a priori, we do not have a uniform L} bound on their corresponding control parameters B;, nor
a uniform L bound on A;, nor a uniform lower bound on the corresponding Taylor terms a;. Arguing
similarly to the previous subsections, if such bounds could be established, one could hope to use them to
establish a uniform H?® bound on the regularized solutions (v;,I';) and hence extend their time of existence
by an amount uniform in j. To establish such uniform control on these pointwise parameters, we will run a
relatively simple bootstrap argument. From here on, we write M := ||(vo, [o) |l and Mz := || (v(T), T'7)||m--
To set up the bootstrap, we begin by noting that at time T, we have by Sobolev embedding and interpolation,
the bound

(9.18) [0;(T) = 0(D)l| e (r.y S 272 M.

Moreover, by the properties of ¥<;, we have ||Uj(T)HC%+e Sc 1. Hence, initially we have
(9.19) A;(T) < P(C) + 272 M5
where P > 1 is some sufficiently large positive polynomial. As long as the choice of T we make later on

depends only on C and ¢y (but not on j), we can arrange by taking j large enough, the initial bound

(9.20) A;(T) <2P(C).
Finally, if j is large enough, and T is as above, we also initially have (for instance),
- 2
a; (T) Z gCO.

Now, we make the bootstrap assumption that on a time interval [T , To] with T < Ty < T we have the bounds

To 1

(9.21) ~ Bj(f) dt < 401(14)(50, Aj(t) < 4f)(C)7 aj(t) > 500, Fj(t) € 2A,
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for j > jo(M,Tp) and some large universal constant C7 > 1 depending only on A := sup,¢(o ) A(t). Our goal
will be to show that the constant 4C1dy can be improved to 2C1¢ and the constant 4P(C) can be improved
to 2P(C), with similar improvements on the Taylor term and the collar. After we close this boostrap, we will
give a separate argument which uses the uniform bounds on the control parameters to establish a uniform
bound for (v;,T';) in H®, and hence permit us to continue the solution. To close the above bootstrap, we
aim to establish the bounds

. . 2
(922) Bj S Cl(A)B + C2275j, Aj S P(C) + C2276j, aj 2 gCO, P](t) € gA*,

where ¢ > 0 is some small positive constant and C, depends on the size of M as well as the constant C

above. The bootstrap can then be closed by choosing jo large enough to absorb the contribution of Cj.

As mentioned above, the main difficulty in comparing B; with B and A; with A is, as usual, the fact that
the corresponding domains €2; and §2 are different. Our starting point is to select the parameter ¢y and the
time T'(Jy) to ensure that 2; and 2 are close enough. As mentioned above, in order for our argument not
to be circular, we need to ensure that the choice of §y depends only on ¢y and C. Our first aim is to obtain
some preliminary bounds for n; —n;41 in L*° and Clz. We let k be the smallest integer larger than s. First,

by the double exponential bound in Theorem and the bootstrap hypothesis, we have for each j,
1050l S exp (exp(80) los(K (1 + 25 (o(T), D) e )

Above, K is some (possibly large) constant depending on C and ¢y which we will let change from line to line.

In the above estimate, if we take Kdy < 1 (in particular, §y does not depend on j), then we can arrange for
(9.23) (v, Tyl S K255 M2 (Mz27)°

for some small constant § > 0, where we assumed without loss of generality that Mz > 1 to simplify notation.
Note here that there is a slight loss compared to (9.2)) coming from the double exponential bound in the
energy estimate. On the other hand, the difference estimates, Lemma and the energy coercivity ensures

that by Gronwall and the bootstrap assumption, we have
D((v;,T;), (vj+1,Tj41)) S 27¥°KMZ exp (KboZ;),

where Z; = sup;j_;oq, (log(K + KE*(vj,T;)) + log(K + KE*(v;+1,Tj11))) and k is, again, the smallest

integer larger than s. By the higher energy bound and the bootstrap assumption, we have
Z; S Klog(1+22%) (o(T), T3)[I22) S Ky

where we used the higher energy bound for the regularized solution to propagate log(1 + E*(v;,T;)) and
control log(1+E*(v;,T;)) by log(1+22%||(v(T),T'7)||2.) as well as the fact that the volume of {; is conserved
and Holder’s inequality to estimate ||(v(T), T'7)[|z2 <a 1. Again, we choose §y small enough (and therefore
T) depending only on C and ¢y so that

exp(KdoZ;) < 29,
for some sufficiently small § > 0 (depending only on s). Next, we pick jo depending on My, C and ¢ so that
if j > jo (after possibly relabelling ¢), we have

D((v5,T5), (041, T541)) S 277670 |0, Ty) |3 S 2957927
with universal implicit constant. The key point to observe here is that there is now a slight loss in the

difference estimates and energy estimates compared to the previous subsections because of the stronger

control parameter in the difference bounds and the logarithmic factor in the energy estimates. However, by
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using these estimates, we still obtain by Sobolev embedding and interpolating, the bounds (after possibly
relabelling §)

) ) _ 3
(9.24) i = nillas oy S27%7 I = minalloeen S22 I —njsallzeen S 277,

all with universal implicit constant if jo is large enough. The first bound will give us control of [|T;| .3 in
the first estimate in . The second bound above gives us control over ||I';||¢1.c for the second estimate in
and also shows that I'; € %A*. The third bound ensures that I'; and I'j 1 are sufficiently close. With
this closeness established, we now work towards closing the bootstrap (9.22)) for the ||v;|[y1. ;) component

of B; and the ij”c%“ component of A;. We show the details for [[v;|[y1.00(q,) as the other component

(€25)
is very similar. We estimate in three steps. First, we observe that from the bounds for ¥<;, we have

(9.25) 1< olwie Sa B.

We can ensure that the implicit constant in this estimate is less than Cy(A) if C1(A) is initially chosen large
enough. Then we compare ¥<;v and U< ;v; which is justified thanks to (9.24]). We have

Vejv—Vejv; = E Ve — Wgju.
1>

By Sobolev embedding and a similar argument to the C'2 bound for Nj+1 — 14, we see that
W <041 — Tjvl e < C92770,
which gives by summation
(9.26) 1 <jv = Uejvjflwie < C2277,
Using the error bound for I — W<, Sobolev embedding and the higher energy bounds, we also have

(9.27) 10 <05 = vjllwree < Co277°.

Combining (9.25)), (9.26)) and (9.27) shows that

lvjllwi.o ;) < C1(A)B + 2799,

Doing a similar estimate for ||v;|| and taking j large enough allows us to close the bootstrap for A;.

3t

It remains now to improve the bootstrap assumption for the Taylor term a;. To do this, we need a suitable
way of comparing the C! norms of the pressures p; and p. We begin by defining the shrunken domain ¢’
via n/ :=n— 279, As Q; is within distance O(2729) of Q for j > jo, it follows that
ocan ()
Jj2Jjo
We next note the following bound which holds on Q' for any 0 <6 < §,

(9.28) lo; = ol | < G270,

C%+5(Q/
This follows by similar reasoning to the above. Now, we establish the following C'! estimate for p — p;:
(9:29) Ip = pjllcr @) < Ca279°.

We begin by splitting p — p; into an inhomogeneous part plus a harmonic part on €,

p—p; =ATA(p—p;) + Hp — pj).
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Using Proposition the dynamic boundary condition and the fact that the boundary of Q' is within
distance 277 of the boundaries of  and Q;, we have

IH(P —pj)llcrs o Sc 27 (Ipllere ) + 1pjllcreq,))-
By Lemma and the bootstrap assumption on A;, this gives

IH(p — pj)llcrs oy Sc 277°°.

To estimate the inhomogeneous part, we can argue similarly to the proof of Lemma [7.5| using a bilinear
frequency decomposition for A(p; — p), to obtain

1A AP = pi)ller@) Se llv = vill pges gy < C22777,

(
where in the second inequality we used (9.28). Finally, to close the bootstrap on the Taylor term a;, we can

work in collar coordinates on I', to estimate
. . — s
inf Vpy(@) = inf [Vp(@)] = Ip; = pllesa =27 (Ipsllerecay) + ol o)

In the above, we first estimate the error between Vp;(xz + n;(z)v(z)) and Vp,(z + n'(z)v(z)) (and also
Vp(z + 7/ (z)v(z)) and Vp(z + n(z)v(z))) using the C¢ Hélder regularity of p; and p. Then, we estimate
the difference between Vp;(z 4+ 7'(z)v(x)) and Vp(x + n'(z)v(z)) on the common domain using our bounds
for [|p; — pHCl(Q/)~

Taking jo large enough and using (9.29) and Lemma this gives

2
aj>f

= 3007

which closes the bootstrap for a;.

From the above argument, we see that for j > jo, the regular solutions (v;,I';) are defined on the interval
[T ,T] and satisfy the assumptions 1' What we do not yet know is whether we have a uniform in j
bound for the H® norm of (v;,I';). Once we have this, will follow from our continuous dependence
result. From here on, we assume without loss of generality that Mz > C(A). We let ¢; denote the frequency
envelope for the data at time 7. Similarly to the above, on a time interval [T, Tb], we make the bootstrap

assumption that for finitely many j > jo,
(9-30) (v, T) s < M.

As in the previous subsection, we let « > 1 be such that s+ « is an integer. Then the higher energy bounds,

[©30) and (F21) yield
105, Tj)[[ee+e S 27%¢; exp(Kdo log(MZ)) My

where K is some constant depending on C. As long as dg is such that Ky < 1, we obtain
j 146
(9.31) (v, D) lms+a S 27%c; ML
for some positive constant § < 1. A similar argument with the difference bounds yields
1o o—js ayl4d
D((v7,Ty), (w1, Tgn))? S 2770 M.
Arguing as in the local well-posedness result, we can use the above two bounds to estimate

§
(05, T5) lrs S Mz*°,
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which improves the bootstrap. We are then able to finally conclude the bound (9.17) and thus the proof of

Theorem [L7
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